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Learning Objectives

• Describe the problems of using a regular multilevel model for 
a binary outcome variable

• Write model equations for multilevel logistic regression

• Estimate intraclass correlations for binary outcomes

• Plot model predictions in probability unit



Binary Outcomes

• Pass/fail

• Agree/disagree

• Choosing stimulus A/B

• Diagnosis/no diagnosis



Example Data

• HSB data

• mathcom
• 0 (not commended) if mathach< 20

• 1 (commended) if mathach ≥ 20





Linear, Normal MLM

Random effects:

Conditional model:
Groups   Name        Variance Std.Dev.
id       (Intercept) 0.005148 0.07175 
Residual             0.136664 0.36968 
Number of obs: 7185, groups:  id, 160

Dispersion estimate for gaussian family (sigma^2): 0.137 

Conditional model:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) 0.178404   0.007222   24.70   <2e-16 ***
meanses 0.178190   0.017483   10.19   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Prediction Out of Range



Problems

• Out of range prediction
• E.g., predicted value = -0.18 when meanses = -2

• Non-normality
• The outcome can only take two values, and clearly not normal

• Nonconstant error variance/heteroscedasticity



Multilevel Logistic Model
For binary responses



Logistic Model

• A special case of the Generalized Linear Mixed Model (GLMM)

• Modify the linear, normal model in two ways:

1. Outcome distribution: Normal→ Bernoulli

2. Predicted value
• Mean of binary outcome (i.e., probability with range 0 to 1)



Logistic Model

• A special case of the Generalized Linear Mixed Model (GLMM)

• Modify the linear, normal model in two ways:

1. Outcome distribution: Normal→ Bernoulli

2. Predicted value
• Mean of binary outcome (i.e., probability with range 0 to 1)

• Transformed mean (i.e., log odds with range −∞ to ∞)



Outcome Distribution

Bernoulli Normal



Transformation (Step 1): Odds

• Odds: Probability / (1 – Probability)

• Example: 
• 80% chance of being commended

• = 4 to 1 odds in favor of being commended

• Odds = 4 = 80% / (1 – 80%)

• Range of odds: 0 to ∞



Transformation (Step 2): Log-Odds

• Instead of predicting the probability, we predict the log odds
• Solve the out of range problem

• E.g., Probability = 0.8, odds = 4, log odds = 1.39

• E.g., Probability = 0.1, odds = 0.11, log odds = -2.20

• Range of log-odds: −∞ to ∞
No longer needs to 
worry about out-of-

range prediction



In logistic models, the 
coefficients are in the 
unit of log-odds
The transformation is called the link 
function

Interpretation less straight forward

Graph is preferred



Equations for Logistic MLM
Unconditional Model



Linear, Normal Model

• Lv 1: mathcomij = β0j + eij

eij ~ N(0, σ)

• Lv 2: β0j = γ00 + u0j

u0j ~ N(0, τ0)



Another Way to Write the Model

• Lv 1: mathcomij ~ N(μij, σ)

μij = β0j

• Lv 2: β0j = γ00 + u0j

u0j ~ N(0, τ0)

0 β0j

eij mathcomij



Replace the Distribution

• Lv 1: mathcomij ~ Bernoulli(μij)

μij = β0j

• Lv 2: β0j = γ00 + u0j

u0j ~ N(0, τ0)

Note: The Bernoulli
distribution does not 

have a scale parameter



Transformation/Link Function

• Lv 1: mathcomij ~ Bernoulli(μij)

ηij = logit(μij) = log[μij / (1 - μij)]
ηij = β0j

• Lv 2: β0j = γ00 + u0j

u0j ~ N(0, τ0)

Transform probability 
to log-odds

Model log-odds 
ηij = linear predictor



Multilevel Logistic Model

• Lv 1: mathcomij ~ Bernoulli(μij)

ηij = logit(μij) = log[μij / (1 - μij)]
ηij = β0j

• Lv 2: β0j = γ00 + u0j

u0j ~ N(0, τ0)

β0j = Mean log-odds for 
school j

u0j = School j’s deviation in 
log-odds

γ00 = log-odds for an average school



brms output

Group-Level Effects: 
~id (Number of levels: 160) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)     0.76      0.06     0.64     0.89 1.00     1380     2196

Population-Level Effects: 
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept    -1.69      0.07    -1.84    -1.55 1.00     1714     2444

• For an average school, the estimated log-odds for being 

commended = -1.69, 95% CI [-1.84, -1.55]

• The estimated school-level standard deviation in log-odds for 

being commended = 0.76, 95% CI [0.64, 0.89]



Intraclass Correlation

Group-Level Effects: 
~id (Number of levels: 160) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)     0.76      0.06     0.64     0.89 1.00     1380     2196

• In the unit of log odds, σ2 is fixed to be π2 / 3
• π = 3.14159265 . . .

• Intraclass correlation:

There is no σ parameter



Interpretations of Coefficients
Conditional Model



Multilevel Logistic Model

• Lv 1: mathcomij ~ Bernoulli(μij)

ηij = logit(μij) = log[μij / (1 - μij)]
ηij = β0j

• Lv 2: β0j = γ00 + γ01 meansesj + u0j

u0j ~ N(0, τ0)

β0j = Mean log-odds for 
school j

u0j = School j’s deviation in 
log-odds

γ00 = Predicted log-odds when 
meanses = 0 and u0j = 0
γ01 = Predicted difference in log-odds 
associated with a unit change in 
meanses = 0



Adding a Level-1 Predictor

• Lv 1: mathcomij ~ Bernoulli(μij)

ηij = logit(μij) = log[μij / (1 - μij)]
ηij = β0j + β1j ses_cmcij

• Lv 2: β0j = γ00 + γ01 meansesj + u0j

β1j = γ10 + u1j

Same thing: Cluster-
mean centering, 

random slopes; just in 
log-odds

β1j = Predicted difference in log-odds 
associated with a unit difference in 
student-level SES within school j



brms Output

Group-Level Effects: 
~id (Number of levels: 160) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)              0.52      0.05     0.42     0.64 1.00     1220     2226
sd(ses_cmc)                0.11      0.07     0.01     0.26 1.01     1164     1319
cor(Intercept,ses_cmc)    -0.48      0.44    -0.98     0.72 1.00     2234     2064

Population-Level Effects: 
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept    -1.76      0.06    -1.87    -1.65 1.00     1840     2199
meanses 1.45      0.14     1.19     1.73 1.00     1801     2381
ses_cmc 0.59      0.06     0.48     0.71 1.00     3791     2775



Cluster-/Unit-Specific vs. Population Average

• Coefficients in MLM requires a cluster-specific (CS)
interpretation

• Predicted difference in log-odds for two students in the same school
(i.e., conditioned on u0j), one with SES_cmc = 1 and the other with 
SES_cmc = 0 (so they have the same u0j)

• As opposed to population average (PA) coefficients (e.g., GEE)
• Predicted difference in log-odds for an average student with 

SES_cmc = 1 and an average student with SES_cmc = 0

• Coefficients are usually smaller with PA than with CS 



Interpretation is Hard

• Better approach: Plot the results in probability unit

  

   

   

   

    

                     

       

 
 
  

 
 
 

  

   

   

   

    

      

       
 

 
  

 
 
 



Notes on Interpretation

• Predicted difference in probability is not constant across 
different levels of the predictor

• It’s useful to get the predicted probabilities for representative 
values in the data

>#   meanses ses_cmc .fitted
># 1       0    -0.5    0.126
># 2       0     0.5    0.199

>#   meanses ses_cmc .fitted
># 1    -0.5       0    0.088
># 2     0.5       0    0.270



Notes on Interpretation

• Another common practice is to convert the coefficients to 
odds ratio

• OR = exp(γ) for average slope

• OR = exp(β1j) for cluster-specific slope

• It’s still hard to understand what a ratio of two odds would 
mean



Generalized Linear Mixed-Effect Model 
(GLMM)

For other discrete outcomes



Intrinsically Non-Normal Outcomes

• Counts
• E.g., # of correct answers, # children, # symptoms, incidence rates

• Rating scales (Ordinal)
• E.g., Likert scale, ranking

• Nominal
• E.g., voting in a 3-party election



Generalized Linear Model

• McCullagh & Nelder (1989)

• Generalized linear: linear after some transformation
• E.g., logit(μ) = b0 + b1 X1 + b2 X2



Generalized Linear Model (cont’d)

• Three elements:
• Error/conditional distribution of Y (with mean μ and an optional 

dispersion parameter)
• E.g., Bernoulli

• Linear predictor (η)
• The predicted value (e.g., log odds)

• Link function (η = g[μ])
• The transformation



Other Common Types of GLM/GLMM

• Binomial logistic

• Poisson

• Ordinal (not GLMM but highly related)



Binomial Logistic

• For counts (with known number of trials)
• E.g., number of female hires out of n new hires

• E.g., number of symptoms on a checklist of n items

• Multiple Bernoulli trials

• Conditional distribution: Binomial(n, μ)

• Link: logit

• Linear predictor: log odds

• R code: family = binomial("logit")



Poisson

• For counts (with infinite/vague number of trials)
• E.g., number of binge drinking episodes

• E.g., number of spam emails

• Conditional distribution: Poisson(μ)

• Link: log

• Linear predictor: log rate of occurrence

• R code: family = Poisson("log")



Ordinal

• For ordinal outcome with less than 5 categories/skewed 
distribution

• E.g., Happiness (1-4)

• Conditional distribution: Categorical

• Link: logit

• Linear predictor: log odds of endorsing k + 1 or above vs. k or 
below

• E.g., choosing 3 or 4 vs. 2 or 1 on the happiness scale

• Check out the R function ordinal::clmm()


