Multilevel Logistic Models

And MLM for Categorical Outcomes October 24 2020 (updated: 6 November 2022)

Learning Objectives

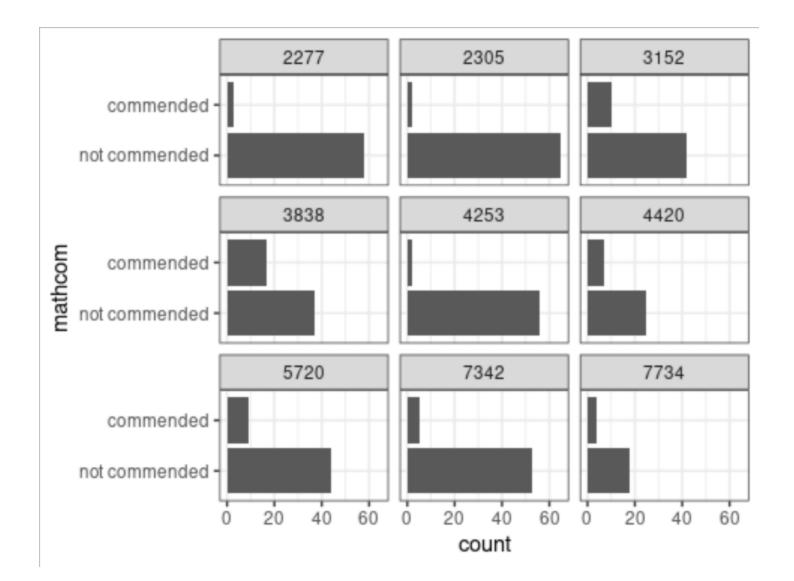
- Describe the problems of using a regular multilevel model for a binary outcome variable
- Write model equations for multilevel logistic regression
- Estimate intraclass correlations for binary outcomes
- Plot model predictions in probability unit

Binary Outcomes

- Pass/fail
- Agree/disagree
- Choosing stimulus A/B
- Diagnosis/no diagnosis

Example Data

- HSB data
- mathcom
 - 0 (not commended) if mathach < 20
 - 1 (commended) if mathach \geq 20



Linear, Normal MLM

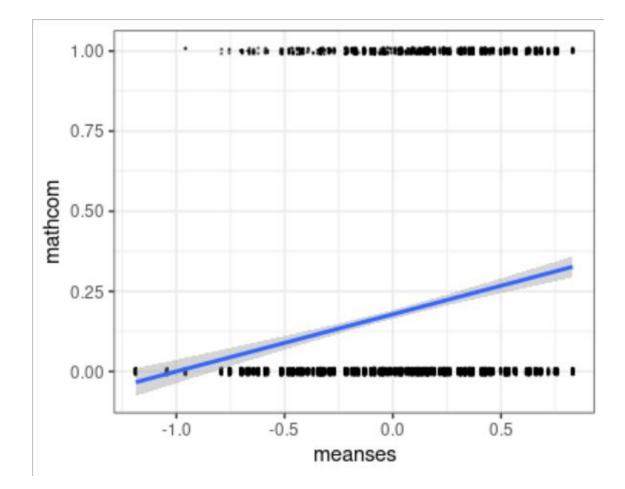
Random effects:

Conditional model: Groups Name Variance Std.Dev. id (Intercept) 0.005148 0.07175 Residual 0.136664 0.36968 Number of obs: 7185, groups: id, 160

Dispersion estimate for gaussian family (sigma^2): 0.137

Conditional model: Estimate Std. Error z value Pr(>|z|) (Intercept) 0.178404 0.007222 24.70 <2e-16 *** meanses 0.178190 0.017483 10.19 <2e-16 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Prediction Out of Range



Problems

- Out of range prediction
 - E.g., predicted value = -0.18 when meanses = -2
- Non-normality
 - The outcome can only take two values, and clearly not normal
- Nonconstant error variance/heteroscedasticity

Multilevel Logistic Model

For binary responses

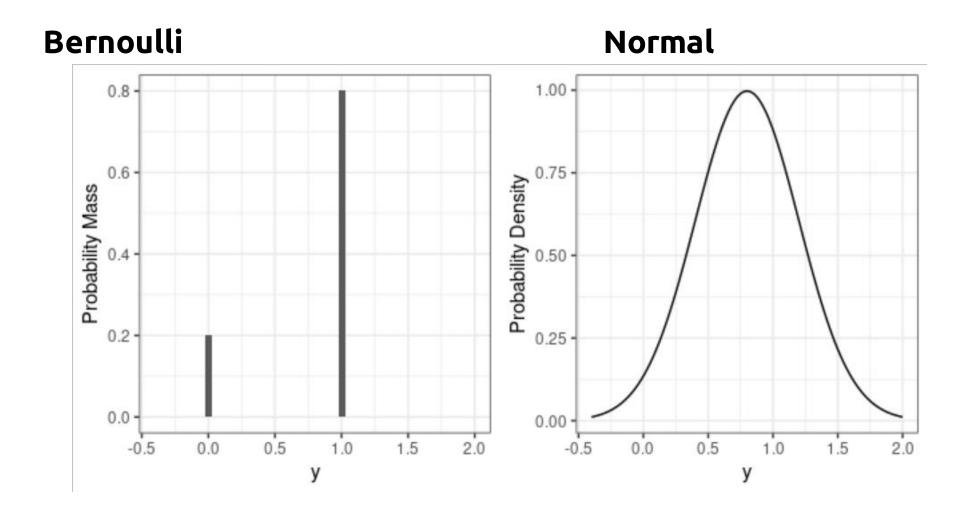
Logistic Model

- A special case of the *Generalized Linear Mixed Model* (GLMM)
- Modify the linear, normal model in two ways:
- 1. Outcome distribution: Normal \rightarrow Bernoulli
- 2. Predicted value
 - Mean of binary outcome (i.e., probability with range 0 to 1)

Logistic Model

- A special case of the Generalized Linear Mixed Model (GLMM)
- Modify the linear, normal model in two ways:
- 1. Outcome distribution: Normal \rightarrow Bernoulli
- 2. Predicted value
 - Mean of binary outcome (i.e., probability with range 0 to 1)
 - Transformed mean (i.e., log odds with range $-\infty$ to ∞)

Outcome Distribution



Transformation (Step 1): Odds

- Odds: Probability / (1 Probability)
- Example:
 - 80% chance of being commended
 - = 4 to 1 odds in favor of being commended
 - Odds = 4 = 80% / (1 80%)
- Range of odds: 0 to ∞

Transformation (Step 2): Log-Odds

- Instead of predicting the probability, we predict the log odds
 - Solve the out of range problem

$$Log Odds = log \frac{Probability}{1 - Probability}$$

- E.g., Probability = 0.8, odds = 4, log odds = 1.39
- E.g., Probability = 0.1, odds = 0.11, log odds = -2.20
- Range of log-odds: $-\infty$ to ∞

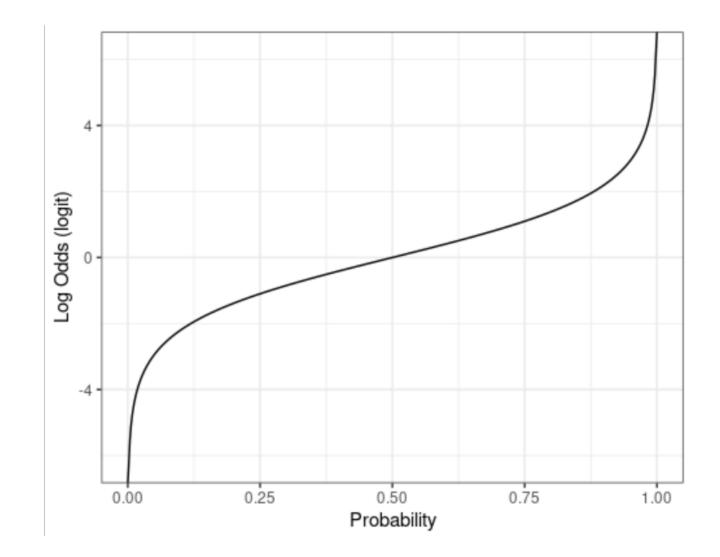
No longer needs to worry about out-ofrange prediction

In logistic models, the coefficients are in the unit of log-odds

The transformation is called the <u>link</u> <u>function</u>

Interpretation less straight forward

Graph is preferred



Equations for Logistic MLM

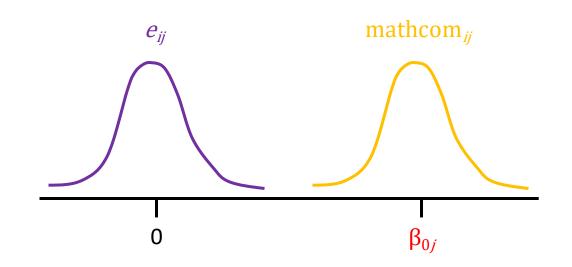
Unconditional Model

Linear, Normal Model

- Lv 1: mathcom_{ij} = $\beta_{0j} + e_{ij}$ $e_{ij} \sim N(0, \sigma)$
- Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$

Another Way to Write the Model

- Lv 1: mathcom_{*ij*} ~ $N(\mu_{ij}, \sigma)$ $\mu_{ij} = \beta_{0j}$
- Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$



Replace the Distribution

• Lv 1: mathcom_{*ij*} ~ Bernoulli(μ_{ij}) $\mu_{ij} = \beta_{0j}$ • Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$

Note: The Bernoulli distribution does not have a scale parameter

Transformation/Link Function

• Lv 1: mathcom_{ij} ~ Bernoulli(μ_{ij}) $\eta_{ij} = logit(\mu_{ij}) = log[\mu_{ij} / (1 - \mu_{ij})]$ $\eta_{ij} = \beta_{0j}$ • Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$ Transform probability to log-odds

Modellog-odds η_{ij} = linear predictor

Multilevel Logistic Model

• Lv 1: mathcom_{*ij*} ~ Bernoulli(μ_{ij}) $\eta_{ij} = \log(\mu_{ij}) = \log[\mu_{ij}/(1 - \mu_{ij})]$ $\eta_{ij} = \beta_{0j}$ • Lv 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $u_{0j} \sim N(0, \tau_0)$ β_{0j} = Mean log-odds for school *j*

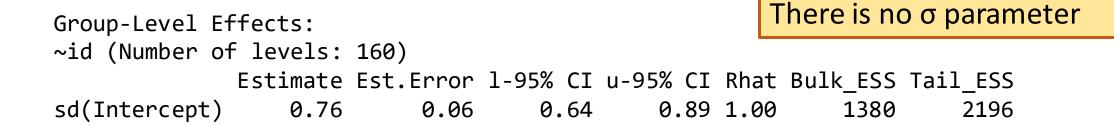
brms output

Group-Level Effects: ~id (Number of levels: 160) Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sd(Intercept) 0.76 0.06 0.64 0.89 1.00 1380 2196 Population-Level Effects: Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS

Intercept -1.69 0.07 -1.84 -1.55 1.00 1714 2444

- For an average school, the estimated log-odds for being commended = -1.69, 95% CI [-1.84, -1.55]
- The estimated school-level standard deviation in log-odds for being commended = 0.76, 95% CI [0.64, 0.89]

Intraclass Correlation



- In the unit of log odds, σ^2 is fixed to be π^2 / 3
 - $\pi = 3.14159265...$
- Intraclass correlation:

•
$$\rho = \frac{\tau_0^2}{\tau_0^2 + \sigma^2} = \frac{0.76^2}{0.76^2 + \pi^2/3} = .15$$

Interpretations of Coefficients Conditional Model

Multilevel Logistic Model

• Lv 1: mathcom_{ij} ~ Bernoulli(μ_{ij}) $\eta_{ij} = \text{logit}(\mu_{ij}) = \log[\mu_{ij} / (1 - \mu_{ij})]$ $\eta_{ij} = \beta_{0j}$ • Lv 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} \text{ meanses}_j + u_{0j}$

*u*_{0*j*} = School *j*'s deviation in log-odds

β_{0j} = Mean log-odds for school *j*

 γ_{00} = Predicted log-odds when meanses = 0 and u_{0j} = 0 γ_{01} = Predicted difference in log-odds associated with a unit change in meanses = 0

Adding a Level-1 Predictor

• Lv 1: mathcom_{*ij*} ~ Bernoulli(
$$\mu_{ij}$$
)
 $\eta_{ij} = \text{logit}(\mu_{ij}) = \log[\mu_{ij} / (1 - \mu_{ij})]$
 $\eta_{ij} = \beta_{0j} + \beta_{1j} \text{ses}_{cmc_{ij}}$

Same thing: Clustermean centering, random slopes; just in log-odds

Lv 2:
$$\beta_{0j} = \gamma_{00} + \gamma_{01} \operatorname{meanses}_{j} + u_{0j}$$

 $\beta_{1j} = \gamma_{10} + u_{1j}$
 $\binom{u_{0j}}{u_{1j}} \sim N\left(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}\tau_{0}^{2} & \tau_{01}\\\tau_{01} & \tau_{1}^{2}\end{bmatrix}\right)$

β_{1j}= Predicted difference in log-odds associated with a unit difference in student-level SES <u>within school j</u>

brms Output

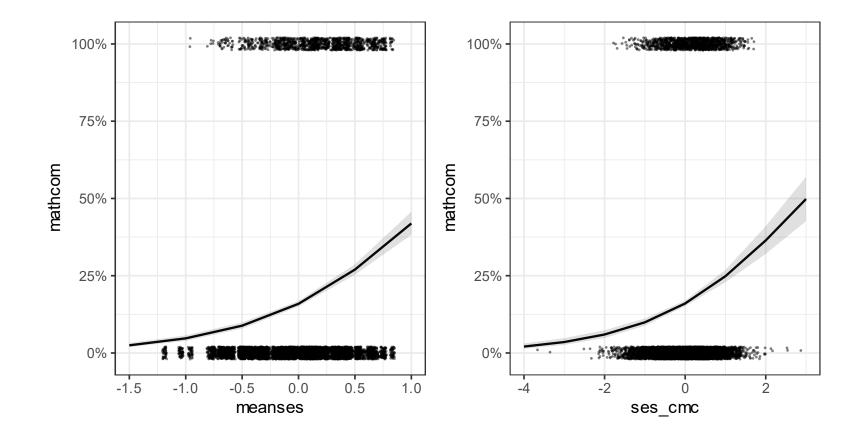
Group-Level Effects:									
~id (Number of levels	5: 160)								
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat B	ulk_ESS	Tail_ESS		
<pre>sd(Intercept)</pre>	0.52	0.05	0.42	0.64	1.00	1220	2226		
<pre>sd(ses_cmc)</pre>	0.11	0.07	0.01	0.26	1.01	1164	1319		
cor(Intercept,ses_cmc	c) -0.48	0.44	-0.98	0.72	1.00	2234	2064		
Population-Level Effects:									
Estimate Es	st.Error 1-9	5% CI u-95	5% CI Rhat	: Bulk_ESS	5 Tail_	ESS			
Intercept -1.76	0.06	-1.87	-1.65 1.00	1846) 21	199			
meanses 1.45	0.14	1.19	1.73 1.00	1801	2	381			
ses_cmc 0.59	0.06	0.48	0.71 1.00	3791	2	775			

Cluster-/Unit-Specific vs. Population Average

- Coefficients in MLM requires a <u>cluster-specific (CS)</u> interpretation
 - Predicted difference in log-odds for two students in the <u>same school</u> (i.e., conditioned on u_{0j}), one with SES_cmc = 1 and the other with SES_cmc = 0 (so they have the same u_{0j})
- As opposed to <u>population average (PA)</u> coefficients (e.g., GEE)
 - Predicted difference in log-odds for an <u>average</u> student with SES_cmc = 1 and an <u>average</u> student with SES_cmc = 0
- Coefficients are usually smaller with PA than with CS

Interpretation is Hard

• Better approach: Plot the results in probability unit



Notes on Interpretation

- Predicted difference in probability is not constant across different levels of the predictor
- It's useful to get the predicted probabilities for representative values in the data

>#		meanses	ses_cmc	.fitted
>#	1	0	-0.5	0.126
>#	2	0	0.5	0.199
>#		meanses	ses_cmc	.fitted
>#	1	-0.5	0	0.088
>#				

Notes on Interpretation

- Another common practice is to convert the coefficients to odds ratio
 - OR = exp(γ) for average slope
 - OR = $\exp(\beta_{1j})$ for cluster-specific slope
- It's still hard to understand what a ratio of two odds would mean

Generalized Linear Mixed-Effect Model (GLMM)

For other discrete outcomes

Intrinsically Non-Normal Outcomes

- Counts
 - E.g., # of correct answers, # children, # symptoms, incidence rates
- Rating scales (Ordinal)
 - E.g., Likert scale, ranking
- Nominal
 - E.g., voting in a 3-party election

Generalized Linear Model

- McCullagh & Nelder (1989)
- Generalized linear: linear after some transformation
 - E.g., $logit(\mu) = b_0 + b_1 X_1 + b_2 X_2$

Generalized Linear Model (cont'd)

- Three elements:
 - Error/conditional distribution of Y (with mean µ and an optional dispersion parameter)
 - E.g., Bernoulli
 - Linear predictor (η)
 - The predicted value (e.g., log odds)
 - Link function ($\eta = g[\mu]$)
 - The transformation

Other Common Types of GLM/GLMM

- Binomial logistic
- Poisson
- Ordinal (not GLMM but highly related)

Binomial Logistic

- For counts (with known number of trials)
 - E.g., number of female hires out of *n* new hires
 - E.g., number of symptoms on a checklist of *n* items
- Multiple Bernoulli trials
- Conditional distribution: Binomial(*n*, μ)
- Link: logit
- Linear predictor: log odds
- R code: family = binomial("logit")

Poisson

- For counts (with infinite/vague number of trials)
 - E.g., number of binge drinking episodes
 - E.g., number of spam emails
- Conditional distribution: Poisson(µ)
- Link: log
- Linear predictor: log rate of occurrence
- R code: family = Poisson("log")

Ordinal

- For ordinal outcome with less than 5 categories/skewed distribution
 - E.g., Happiness (1-4)
- Conditional distribution: Categorical
- Link: logit
- Linear predictor: log odds of endorsing k + 1 or above vs. k or below
 - E.g., choosing 3 or 4 vs. 2 or 1 on the happiness scale
- Check out the R function ordinal::clmm()