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Learning Objectives

• Specify models with alternative error covariance structures

• Describe the difference between analyzing trends vs. 
analyzing dynamics with longitudinal data

• Run analyses with time-varying predictors (i.e., level-1 
predictors)

• Interpret and plot results



Covariance Structure



Longitudinal vs. Cross-Sectional Data

• School A: Student 1, 2, 3, . . . 
• Swapping the order is not a problem

• Person A: Observation 1, 2, 3 . . . 
• Swapping the order may be a problem

• Temporal ordering may mean that observations closer in time 
may be more strongly related
• More likely when observations are a day apart vs. a year apart

• However, our previous models do not consider temporal 
dependence



Covariance Structure

• Covariances with respect to time
• Covariance: how much two variables covary

> cov(curran_wide %>% select(read1:read4), use = "pair") %>% print(digits = 2)

read1 read2 read3 read4

read1  0.86  0.67  0.57  0.48

read2  0.67  1.17  0.96  0.96

read3  0.57  0.96  1.35  1.08

read4  0.48  0.96  1.08  1.56

Is there a trend for the 
variances?



Complex Covariance Structure

• Serial Correlation
• Correlation = covariance / (SD1 * SD2)

> cor(curran_wide %>% select(read1:read4), use = "pair") %>% 
print(digits = 2)

read1 read2 read3 read4

read1  1.00  0.66  0.54  0.45

read2  0.66  1.00  0.78  0.76

read3  0.54  0.78  1.00  0.80

read4  0.45  0.76  0.80  1.00 How do the 
correlations look?

Lag 1 correlationLag 2 correlation



Complex Covariance Structure

• It is obvious that there are substantial covariances across time, 
and the variances seem to increase
• Potential violations of (a) independent observations and (b) 

homogeneity of variance

• In MLM, the implied temporal covariance has the form
ZGZ’ + R

- Z: Design matrix for random effects

- G: Covariance matrix of random effects (i.e., u0i, u1i, etc)

- R: Covariance matrix of errors (i.e., eti)



Covariance Structure in OLS

• OLS: Independence
• Only R, with constant variance 

over time
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Covariance Structure in Random-Intercept 
MLM/Repeated Measures ANOVA

• ZGZ’
• Same covariance for all time 

points

• R
• Independent and constant 

variance over time
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Covariance Structure in Random-Intercept 
MLM/Repeated Measures ANOVA

Does this seem to 
describe the data well?
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Covariance Structure With Random Slopes 
(Piecewise Growth)

• ZGZ’
• Same covariance for all time 

points

• R
• Independent and constant 

variance over time
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Covariance Structure With Random Slopes

• Covariance • Correlation
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So far we have only looked at the ZGZ’
part, which are due to person-specific 
intercepts and slopes



Autoregressive(1) Error Covariance Structure

• Decreasing correlation across 
time:
• Lag 1 = ρ; Lag 2 = ρ2

• -1 ≤ ρ ≤ 1

• Estimated ρ = 0.04
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R Output

> glmmTMB(read ~ piece(time0, node = 1) + (piece(time0, node = 1) | id) +
ar1(0 + factor(time) | id),

dispformula = ~0, data = curran_long, REML = TRUE,
control = glmmTMBControl(optimizer = optim, optArgs = list(method = "BFGS")
) %>% 
summary()

Random effects:

Conditional model:
Groups Name          Std.Dev. Corr
id     (Intercept)   0.7714                                   

phase1        0.4743    0.13                           
phase2        0.2247   -0.12       0.96                

id.1   factor(time)1 0.5115   0.04 (ar1) 0.04 (ar1) 0.04 (ar1)

Error autocorrelation is 
small (0.04), after 
including the random 
slopes



Likelihood Ratio Test

anova(m_pw, m_pw_ar1)

Data: curran_long

Models:

m_pw: read ~ phase1 + phase2 + (phase1 + phase2 | id), zi=~0, disp=~1

m_pw_ar1: read ~ phase1 + phase2 + (phase1 + phase2 | id) + ar1(0 + factor(time) | , zi=~0, 
disp=~0

m_pw_ar1:     id), zi=~0, disp=~1

Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)

m_pw 10 3229.7 3281.6 -1604.9   3209.7                         

m_pw_ar1 11 3231.6 3288.7 -1604.8   3209.6 0.0973      1      0.755
Autoregressive effect 
not significant



Remarks

• There are many other structures discussed in the longitudinal 
data analysis
• E.g., AR(2), Toeplitz, etc

• The closer the time points are, the more likely that the errors 
have temporal correlations, even after including the random 
slopes

• In my experience, including an AR(1) structure does a 
reasonable job in many situations



Example



The Cognition, Health, and Aging Project

• The first wave of the CHAP

• Six observations over two weeks
• Sessions 2-6

• baseage: M = 80.13 (SD = 6.11)



Time-Varying Covariates

• Variables at the within-person level that changes over time

• Need cluster-mean/person-mean centering
• Between-person/within-person effects

• Symptoms: Number of physical symptoms in the past 24 hours
• Max = 5

• Mood: Daily report negative mood (1 – 5)
• Mood1: center at 1 (0 – 4)

• Stressor: Presence of a daily stressor (0 = stressor-free day; 1 = 
stressor day)



Decomposition of Effects

• Very important for some variables with longitudinal data 
• But not for the “time” variable

• May not be meaningful for other measures of time (e.g., age)

• Trait: Person mean, time-invariant (in some sense)

• State: Deviation (fluctuation) from person mean, time-varying







Describing Fluctuations

• TIME may not be a predictor (unless a stable trend is found)

• The interest is in the momentary changes



Model 1



Model Equations



Fixed Effects (with glmmTMB)

Conditional model:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)           0.86403    0.24618   3.510 0.000449 ***
mood1_pm              3.86285    0.81368   4.747 2.06e-06 ***
mood1_pmc             0.00396    0.26835   0.015 0.988225    
womenwomen -0.04167    0.28314  -0.147 0.883002    
mood1_pm:womenwomen  -2.14123    0.90529  -2.365 0.018018 *  
mood1_pmc:womenwomen  0.16552    0.30859   0.536 0.591699 

Note the between-person and the 
within-person effects are 

drastically different



plot_model(m1)



Interaction Plots



Between/Within Effects



Model 2



Add stressor to the Equation

• A time-varying binary variable

• stressor_pm (person mean): Average stress level of a person 
(over the study period)

• However, the deviation from the person mean is harder to 
interpret
• E.g., stressor_pmc= 0.8?

• Methodologists do not agree on how to treat it, but for this example 
we’ll keep the binary lv-1 variable

• ➔ Contextual & within-person 



Contextual and Within-Person Effects



Contextual Effect

Conditional model:

Estimate Std. Error z value Pr(>|z|) 

...

stressor_pm 0.8487     0.3008    2.82   0.0048 ** 

stressorstressor day   0.0645     0.1005    0.64   0.5211 

• On a stressor day (or a stressor-free day), a person who is one 
unit higher on average stress level reported on average 0.85 
more symptoms, 95% CI [0.26, 1.44]. 



Topics Not Covered

• Comparable metric across time
• Vertical scaling/Longitudinal measurement invariance

• Lag relationship/cross-lagged/autoregressive model

• Parallel-process model

• Missing data handling

• Multiple cohort design


