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Learning Objectives

• Describe the similarities and differences between 
longitudinal data and cross-sectional clustered data

• Perform some basic attrition analyses

• Specify and run growth curve analysis

• Analyze models with time-invariant covariates (i.e., lv-2 
predictors) and interpret the results



Longitudinal Data and Models



Data Structure

• Students in Schools • Repeated measures within 
individuals

Sch A Sch B

S1 S2 S3 S4 S5 S6 S7

Person A Person B

T1 T2 T3 T1 T2 T3 T4



Types of Longitudinal Data

• Panel data
• Everyone measured at the same time (e.g., every two years)

• Intensive longitudinal data
• Each person measured at many time points

• E.g., daily diary, ecological momentary assessment (EMA)



Two Different Goals of Longitudinal Models

• Trend
• Growth modeling

• Stable pattern

• E.g., trajectory of cognitive 
functioning over five years

• Fluctuations
• Clear trend not expected

• E.g., fluctuation of mood in a 
day



Example



Children’s Development in Reading Skill and 
Antisocial Behavior

• 405 children within first two years entering elementary school

• 2-year intervals between 1986 and 1992

• Age = 6 to 8 years at baseline



Same Multilevel Structure

• At first, it may not be obvious looking at the 
data (in wide format)

T1 T2 T3 T4 T1 T2 T3 T4



Restructuring!

• Long format
“Cluster” 22





Attrition Analysis

• Whether those who dropped out 
differ in important characteristics 
from those who stayed

• Design: Collect information on 
predictors of attrition, and perceived 
likelihood of dropping out

• Limited generalizability

• Missing data handling techniques
• E.g., Multiple imputation, pattern 

mixture models



Visualizing Some “Clusters”

id = 22
id = 34

id = 58

id = 122



Spaghetti Plot



Growth Curve Modeling



MLM for Longitudinal Data

Student i in School j Repeated measures at 
time t for Person i

Lv-1 model MATHij = β0j + β1j SESij + eij READti = β0i + β1i TIMEti + eti

Lv-2 model β0j = γ00 + u0j

β1j = γ10 + u1j

β0i = γ00 + u0i

β1i = γ10 + u1i

Random 
effects Var

𝑢0𝑗
𝑢1𝑗

=
τ0
2 τ01

τ01 τ1
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Var(eij) = σ2

τ0
2, τ1

2 = intercept & slope 
variance between schools
σ2 = within-school
variation (across students)

Var
𝑢0i
𝑢1i

=
τ0
2 τ01

τ01 τ1
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Var(eti) = σ2

τ0
2, τ1

2 = intercept & slope 
variance between persons
σ2 = within-person
variation (across time)



Random Intercept Model (with brms)

> m00 <- brm(read ~ (1 | id), data = curran_long)
> summary(m00)

Group-Level Effects: 
~id (Number of levels: 405) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)     0.54      0.08     0.39     0.68 1.00     1131     1866

Family Specific Parameters: 
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma     1.55      0.04     1.48     1.62 1.00     2310     2707

• Estimated ICC = 0.11



Linear Growth Model

• Here time is treated as a continuous variable
• Can handle varying occasions

• Assume time is an interval variable

• Fit a linear regression line between time and outcome for each 
“cluster” (individual)



(Grand) Centering of Time

• Time = 1, 2, 3, 4 • Time = 0, 1, 2, 3

Read

Time0

Read

Time0 1

τ0
τ0



Compared to Repeated Measures ANOVA

• MLM and RM-ANOVA are the same in some basic situations

• Some advantages of MLM
• Handles missing observations for individuals

• Larger statistical power

• Accommodates varying occasions

• Allows clustering at a higher level (i.e., 3-level model)

• Can include time-varying or time-invariant predictor variables



Random Slope of Time

• It is uncommon to expect the growth trajectory is the same for 
every person

• Therefore, usually the baseline model in longitudinal data 
analysis is the random coefficient model of time



R Output (brms)

Formula: read ~ time + (time | id) 

Data: curran_long (Number of observations: 1325) 

Population-Level Effects: 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept     2.70      0.05     2.61     2.79 1.00     1970     2810

time          1.12      0.02     1.08     1.16 1.00     3568     3404

The estimated mean 
of read at time = 0 is γ00 = 
2.70 (SE = 0.05)

The model predicts that the 
constant growth rate per 1 unit 
increase in time (i.e., 2 years) is γ10

= 1.12 (SE = 0.02) units in read



Group-Level Effects: 
~id (Number of levels: 405) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)           0.76      0.04     0.68     0.84 1.00     1527     2500
sd(time)                0.27      0.03     0.22     0.32 1.00      741     1497
cor(Intercept,time)     0.30      0.12     0.07     0.54 1.00      828     1082

What do the SDs 
mean?

`



Piecewise Growth



Alternative Growth Shape

• For many problems, a linear growth model is at best an 
approximation

• Other common models (need 3+ time points)
• Piecewise

• Polynomial

• Exponential, spline, etc



Piecewise Growth Model

• Piecewise linear function
• Y = β0 + β1 TIME, if TIME ≤ TIMEc

• Y = β0 + β1 TIMEc + β2 (TIME – TIMEc), if TIME > TIMEc

• β0 = initial status (when TIME = 0)

• β1 = phase 1 growth rate (up until TIMEc)

• β2 = phase 2 growth rate (after TIMEc)



Coding of Time

time    phase1    phase2

0         0         0

1         1         0

2         1 1

3         1 2



b0 = 1, b0 = 0.5, b2 = 0.8

• Dashed line:
Phase 1

• Dotted line:
Phase 2 

• Combined:
Linear 
piecewise 
growth



R Output

Formula: read ~ piece(time0, node = 1) + (piece(time0, node = 1) | id)

># Population-Level Effects: 
>#                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
># Intercept              2.52      0.05     2.43     2.62 1.00     2193     2767
># piecetime0nodeEQ11     1.56      0.04     1.48     1.65 1.00     4774     3531
># piecetime0nodeEQ12     0.88      0.03     0.83     0.93 1.00     5974     3254

The model suggests that the 
average growth rate in phase 1 
is 1.56 unit per unit time (SE = 
.04), but the growth rate 
decreases to 0.88 unit/time (SE
= .03) subsequently.



R Output

Group-Level Effects: 
~id (Number of levels: 405) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)                                  0.78      0.04     0.71     0.86 1.00     1737     2420
sd(piecetime0nodeEQ11)                         0.50      0.05     0.40     0.60 1.00     1065     2027
sd(piecetime0nodeEQ12)                         0.25      0.03     0.18     0.31 1.00     1226     2330
cor(Intercept,piecetime0nodeEQ11)              0.11      0.11    -0.10     0.34 1.00     1752     2886
cor(Intercept,piecetime0nodeEQ12)             -0.11      0.13    -0.35     0.15 1.00     3198     3331
cor(piecetime0nodeEQ11,piecetime0nodeEQ12)     0.76      0.15     0.41     0.97 1.00      587     1266

SD of the phase 1 growth 
rate is 0.50. So majority of 
children have growth rates 
between 
1.56 +/- 0.50 = [1.06, 2.06]

SD of the phase 2 growth rate 
is 0.25. So majority of children 
have growth rates between 
0.88 +/- 0.25 = [0.63, 1.13]



Model Comparison

> loo(m_gca, m_pw)

Output of model 'm_gca’:

looic 2953.8 67.1

Output of model 'm_pw’:

looic 2658.1 70.3

• The model with lower LOOIC should be preferred
• Note: the LOO in this example is not very stable due to the non-

normality of the outcome



Predicted Average Trajectory



Including Predictors



Time-Invariant vs. Time-Varying Covariates

• Time-invariant predictor: Lv-2

• Time-varying predictor: Lv-1 (to be discussed next week)
• “Cluster”-mean centering is generally recommended

• However, usually not meaningful for “time.” Why?



Time-Invariant Covariate

• Time-invariant predictor: Lv-2
• Homecog (1-14): mother’s cognitive stimulation at baseline

• Centered at 9

Population-Level Effects: 
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept                       2.53      0.05     2.43     2.62 1.00     2954     3286
piecetime0nodeEQ11              1.57      0.04     1.48     1.65 1.00     4742     3038
piecetime0nodeEQ12              0.88      0.03     0.83     0.93 1.00     5749     3047
homecog9                        0.04      0.02     0.01     0.08 1.00     2717     2356
piecetime0nodeEQ11:homecog9     0.04      0.02     0.01     0.07 1.00     5482     3328

piecetime0nodeEQ12:homecog9     0.01      0.01    -0.01     0.03 1.00     5759     3224



Cross-Level Interactions



Handling Varying Occasions



Different “Time” Variables

• So far we model changes as a function of time passage from a 
common fixed point in history
• I.e., when the study started

• In developmental research, one may be more interested in 
changes as a function of age
• I.e., time passage from each person’s date of birth



• An advantage of MLM is that it does not require equal time 
intervals
• Person 1: age 7 → age 9    → age 10

• Person 2: age 5 → age 6.5     → age 8





Handling Varying Occasions

• Age as predictor (see textbook)

# Subtract age by 6
curran_long <- curran_long %>% 
mutate(kidagetv = kidage + time * 2,

# Compute the age for each time point
kidage6tv = kidagetv - 6)

# Fit the model
m_agesq <- brm(read ~ kidage6tv + I(kidage6tv^2) + (kidage6tv + I(kidage6tv^2) | id),

data = curran_long)
summary(m_agesq)



Group-Level Effects: 

~id (Number of levels: 405) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept)                   0.51      0.11     0.28     0.74 1.00     1871     2192

sd(kidage6tv)                   0.40      0.05     0.31     0.49 1.00      573      784

sd(Ikidage6tvE2)                0.03      0.00     0.02     0.04 1.01      309      522

cor(Intercept,kidage6tv)       -0.92      0.07    -0.99    -0.75 1.03      113      332

cor(Intercept,Ikidage6tvE2)     0.81      0.12     0.52     0.96 1.01      194      412

cor(kidage6tv,Ikidage6tvE2)    -0.95      0.02    -0.98    -0.91 1.00     2251     2386

Population-Level Effects: 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept       -0.32      0.10    -0.51    -0.13 1.00     5713     3244

kidage6tv        1.13      0.04     1.05     1.21 1.00     4869     3388

Ikidage6tvE2    -0.05      0.00    -0.06    -0.04 1.00     5945     3299

The model suggests that the 
average initial growth rate is 
1.13 unit per year (SE = .04)

The growth rate slows down by 
.05 every year. Therefore, at 
Wave 2 (two years later), the 
growth rate is 1.02



Group-Level Effects: 

~id (Number of levels: 405) 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept)                   0.51      0.11     0.28     0.74 1.00     1871     2192

sd(kidage6tv)                   0.40      0.05     0.31     0.49 1.00      573      784

sd(Ikidage6tvE2)                0.03      0.00     0.02     0.04 1.01      309      522

cor(Intercept,kidage6tv)       -0.92      0.07    -0.99    -0.75 1.03      113      332

cor(Intercept,Ikidage6tvE2)     0.81      0.12     0.52     0.96 1.01      194      412

cor(kidage6tv,Ikidage6tvE2)    -0.95      0.02    -0.98    -0.91 1.00     2251     2386

Population-Level Effects: 

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept       -0.32      0.10    -0.51    -0.13 1.00     5713     3244

kidage6tv        1.13      0.04     1.05     1.21 1.00     4869     3388

Ikidage6tvE2    -0.05      0.00    -0.06    -0.04 1.00     5945     3299

The 68% plausible range of the 
initial growth rate is 1.13 +/-
0.44 = [0.69, 1.57]

The 68% plausible range of the 
change in growth rate is -0.05 
+/- 0.03 = [-0.02, -0.08]


