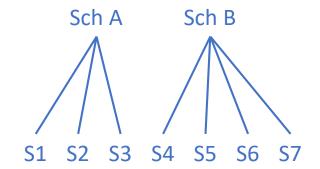
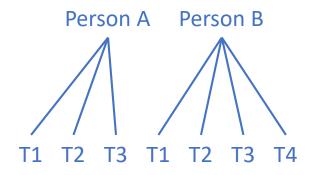
Longitudinal Data Analysis I

PSYC 575

October 3, 2020 (updated: 15 October 2022)

Learning Objectives


- Describe the similarities and differences between **longitudinal data** and cross-sectional clustered data
- Perform some basic attrition analyses
- Specify and run growth curve analysis
- Analyze models with time-invariant covariates (i.e., lv-2 predictors) and interpret the results


Longitudinal Data and Models

Data Structure

• Students in Schools

• Repeated measures within individuals

Types of Longitudinal Data

- Panel data
 - Everyone measured at the same time (e.g., every two years)
- Intensive longitudinal data
 - Each person measured at many time points
 - E.g., daily diary, ecological momentary assessment (EMA)

Two Different Goals of Longitudinal Models

- Trend
 - Growth modeling
 - Stable pattern
 - E.g., trajectory of cognitive functioning over five years

- Fluctuations
 - Clear trend not expected
 - E.g., fluctuation of mood in a day

Example

Children's Development in Reading Skill and Antisocial Behavior

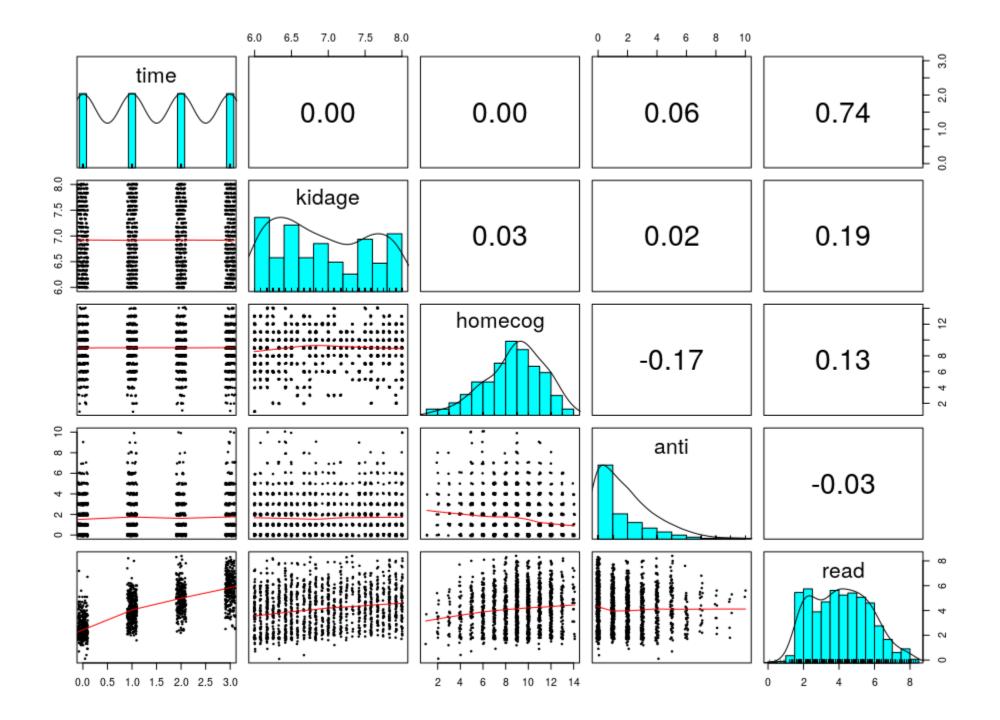
- 405 children within first two years entering elementary school
- 2-year intervals between 1986 and 1992
- Age = 6 to 8 years at baseline

Same Multilevel Structure

 At first, it may not be obvious looking at the data (in <u>wide</u> format)

id <dbl></dbl>	anti1 <dbl></dbl>	anti2 <dbl></dbl>	anti3 <dbl></dbl>	anti4 <dbl></dbl>	read1 <dbl></dbl>	read2 <dbl></dbl>	read3 <dbl></dbl>	read4 <dbl></dbl>
22	1	2	NA	NA	2.1	3.9	NA	NA
34	3	6	4	5	2.1	2.9	4.5	4.5
58	0	2	0	1	2.3	4.5	4.2	4.6
122	0	3	1	1	3.7	8.0	NA	NA
125	1	1	2	1	2.3	3.8	4.3	6.2
133	3	4	3	5	1.8	2.6	4.1	4.0
163	5	4	5	5	3.5	4.8	5.8	7.5
190	0	NA	NA	0	2.9	6.1	NA	NA
227	0	0	2	1	1.8	3.8	4.0	NA
248	1	2	2	0	3.5	5.7	7.0	6.9
	T1	Т2	Т3	T4	T1	Т2	Т3	Т4

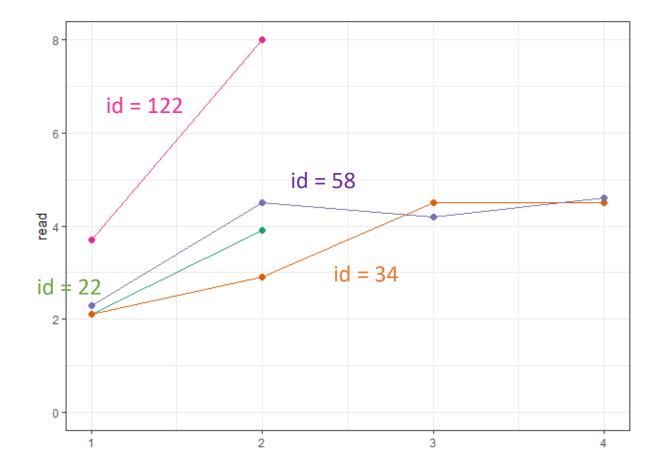
Restructuring!


• <u>Long</u> format

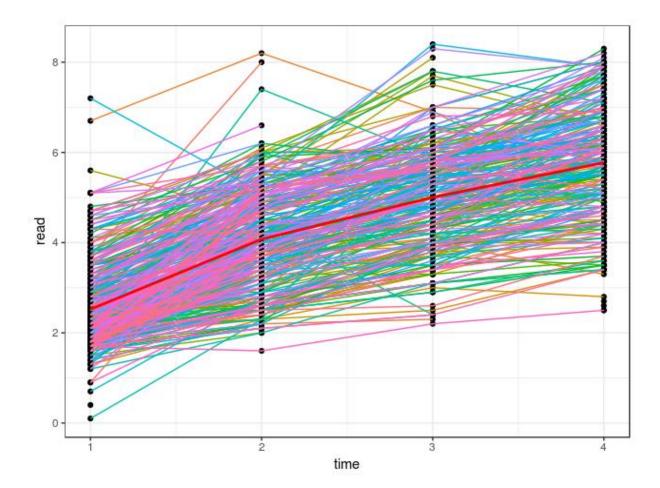
id <dbl></dbl>	anti <dbl></dbl>	read <dbl></dbl>	time <dbl></dbl>
22	1	2.1	1
22	2	3.9	2
22	NA	NA	3
22	NA	NA	4
34	3	2.1	1
34	6	2.9	2
34	4	4.5	3
34	5	4.5	4
58	0	2.3	1
58	2	4.5	2

id <ldb></ldb>	anti <dbl></dbl>	read <dbl></dbl>	time <dbl></dbl>
58	0	4.2	3
58	1	4.6	4
122	0	3.7	1
122	3	8.0	2
122	1	NA	3
122	1	NA	4
125	1	2.3	1
125	1	3.8	2
125	2	4.3	3
125	1	6.2	4

id <dbl></dbl>	anti <dbl></dbl>	read <dbl></dbl>	time <dbl></dbl>
133	3	1.8	1
133	4	2.6	2
133	3	4.1	3
133	5	4.0	4
163	5	3.5	1
163	4	4.8	2
163	5	5.8	3
163	5	7.5	4
190	0	2.9	1
190	NA	6.1	2



Attrition Analysis


- Whether those who dropped out differ in important characteristics from those who stayed
- Design: Collect information on predictors of attrition, and perceived likelihood of dropping out
- Limited generalizability
- Missing data handling techniques
 - E.g., Multiple imputation, pattern mixture models

	comp	olete	incom	plete
	Mean	SD	Mean	SD
anti1	1.49	1.54	1.89	1.78
read1	2.50	0.88	2.55	0.99
kidgen	0.52	0.50	0.48	0.50
momage	25.61	1.85	25.42	1.92
kidage	6.90	0.62	6.97	0.66
homecog	9.09	2.46	8.63	2.70
homeemo	9.35	2.23	9.01	2.41

Visualizing Some "Clusters"

Spaghetti Plot

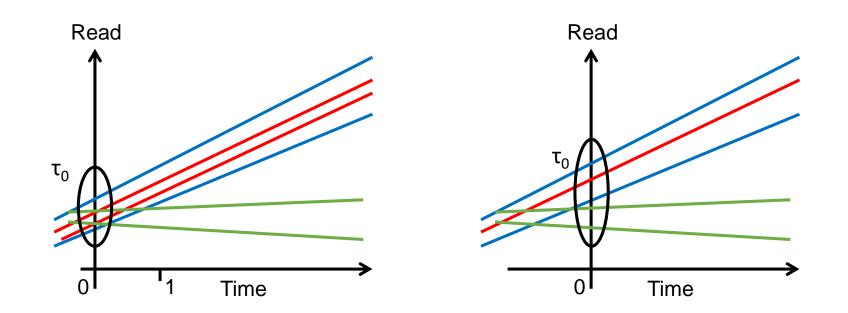
Growth Curve Modeling

MLM for Longitudinal Data

	Student <i>i</i> in School <i>j</i>	Repeated measures at time <i>t</i> for Person <i>i</i>
Lv-1 model	$MATH_{ij} = \beta_{0j} + \beta_{1j} SES_{ij} + e_{ij}$	$READ_{ti} = \beta_{0i} + \beta_{1i} TIME_{ti} + e_{ti}$
Lv-2 model	$\beta_{0j} = \gamma_{00} + u_{0j} \beta_{1j} = \gamma_{10} + u_{1j}$	$\beta_{0i} = \gamma_{00} + u_{0i} \beta_{1i} = \gamma_{10} + u_{1i}$
Random effects	$\operatorname{Var} \begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} = \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix}$ $\operatorname{Var} (e_{ij}) = \sigma^2$	$\operatorname{Var} \begin{pmatrix} u_{0i} \\ u_{1i} \end{pmatrix} = \begin{bmatrix} \tau_0^2 & \tau_{01} \\ \tau_{01} & \tau_1^2 \end{bmatrix}$ $\operatorname{Var} (e_{ti}) = \sigma^2$
	τ_0^2 , τ_1^2 = intercept & slope variance <i>between</i> schools σ^2 = <i>within</i> -school variation (across students)	τ_0^2 , τ_1^2 = intercept & slope variance <i>between</i> persons σ^2 = <i>within</i> -person variation (across time)

Random Intercept Model (with **brms**)

```
> m00 <- brm(read ~ (1 | id), data = curran_long)</pre>
> summary(m00)
Group-Level Effects:
~id (Number of levels: 405)
             Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
                                  0.39 0.68 1.00
sd(Intercept) 0.54
                          0.08
                                                        1131
                                                                 1866
Family Specific Parameters:
     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
         1.55 0.04
                           1.48 1.62 1.00
                                                 2310
                                                         2707
sigma
```


```
• Estimated ICC = 0.11
```

Linear Growth Model

- Here time is treated as a continuous variable
 - Can handle varying occasions
 - Assume time is an *interval* variable
- Fit a linear regression line between time and outcome for each "cluster" (individual)

(Grand) Centering of Time

• Time = 1, 2, 3, 4 • Time = 0, 1, 2, 3

Compared to Repeated Measures ANOVA

- MLM and RM-ANOVA are the same in some basic situations
- Some advantages of MLM
 - Handles missing observations for individuals
 - Larger statistical power
 - Accommodates varying occasions
 - Allows clustering at a higher level (i.e., 3-level model)
 - Can include time-varying or time-invariant predictor variables

Random Slope of Time

- It is uncommon to expect the growth trajectory is the same for every person
- Therefore, usually the <u>baseline model</u> in longitudinal data analysis is the <u>random coefficient model of time</u>

R Output (brms)

Formula: read ~ time + (time | id)
Data: curran_long (Number of observations: 1325)

 Population-Level Effects:
 Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

 Intercept
 2.70
 0.05
 2.61
 2.79
 1.00
 1970
 2810

 time
 1.12
 0.02
 1.08
 1.16
 1.00
 3568
 3404

The estimated mean of read at time = 0 is γ_{00} = 2.70 (*SE* = 0.05) The model predicts that the constant growth rate per 1 unit increase in time (i.e., <u>2 years</u>) is $\gamma_{10} = 1.12$ (*SE* = 0.02) units in read

Group-Level Effects:							
~id (Number of leve]	ls: 405)		_				
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
<pre>sd(Intercept)</pre>	0.76	0.04	0.68	0.84	1.00	1527	2500
<pre>sd(time)</pre>	0.27	0.03	0.22	0.32	1.00	741	1497
<pre>cor(Intercept,time)</pre>	0.30	0.12	0.07	0.54	1.00	828	1082

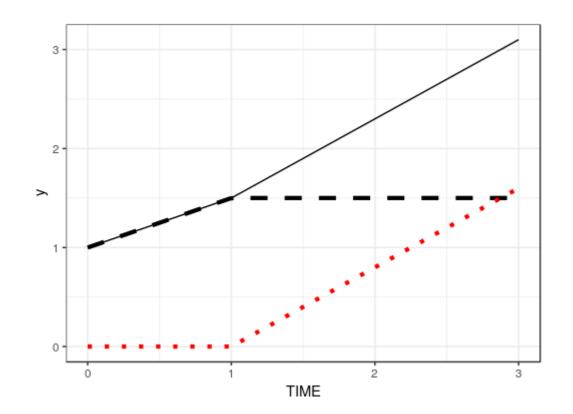
What do the *SD*s mean?

Piecewise Growth

Alternative Growth Shape

- For many problems, a linear growth model is at best an approximation
- Other common models (need 3+ time points)
 - Piecewise
 - Polynomial
 - Exponential, spline, etc

Piecewise Growth Model


- Piecewise linear function
 - $Y = \beta_0 + \beta_1$ TIME, if TIME \leq TIME^c
 - $Y = \beta_0 + \beta_1 \text{ TIME}^c + \beta_2 \text{ (TIME} \text{TIME}^c)$, if TIME > TIME^c
- β_0 = initial status (when TIME = 0)
- β₁ = phase 1 growth rate (up until TIME^c)
- β_2 = phase 2 growth rate (after TIME^c)

Coding of Time

timephase1phase2000110211312

$b_0 = 1, b_0 = 0.5, b_2 = 0.8$

- Dashed line: Phase 1
- Dotted line: Phase 2
- Combined: Linear piecewise growth

R Output

Formula: read ~ piece(time0, node = 1) + (piece(time0, node = 1) | id)

># Population-Level Effects:								
>#	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS	
># Intercept	2.52	0.05	2.43	2.62	1.00	2193	2767	
<pre>># piecetime0nodeEQ11</pre>	1.56	0.04	1.48	1.65	1.00	4774	3531	
<pre>># piecetime0nodeEQ12</pre>	0.88	0.03	0.83	0.93	1.00	5974	3254	

The model suggests that the average growth rate in phase 1 is 1.56 unit per unit time (*SE* = .04), but the growth rate decreases to 0.88 unit/time (*SE* = .03) subsequently.

R Output

Group-Level Effects: ~id (Number of levels: 405)

	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
sd(Intercept)	0.78	0.04	0.71	0.86	1.00	1737	2420
<pre>sd(piecetime0nodeEQ11)</pre>	0.50	0.05	0.40	0.60	1.00	1065	2027
<pre>sd(piecetime0nodeEQ12)</pre>	0.25	0.03	0.18	0.31	1.00	1226	2330
<pre>cor(Intercept,piecetime0nodeEQ11)</pre>	0.11	0.11	-0.10	0.34	1.00	1752	2886
<pre>cor(Intercept,piecetime0nodeEQ12)</pre>	-0.11	0.13	-0.35	0.15	1.00	3198	3331
<pre>cor(piecetime0nodeEQ11,piecetime0nodeEQ12)</pre>	0.76	0.15	0.41	0.97	1.00	587	1266

```
SD of the phase 1 growth
rate is 0.50. So majority of
children have growth rates
between
1.56 +/- 0.50 = [1.06, 2.06]
```

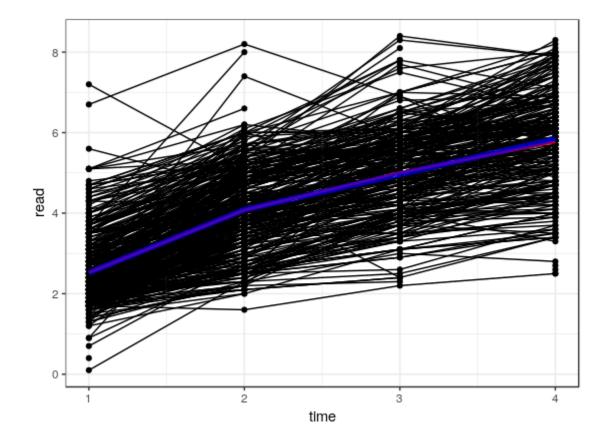
SD of the phase 2 growth rate is 0.25. So majority of children have growth rates between 0.88 +/- 0.25 = [0.63, 1.13]

Model Comparison

> loo(m_gca, m_pw)

Output of model 'm_gca':

looic 2953.8 67.1


Output of model 'm_pw':

looic 2658.1 70.3

• The model with lower LOOIC should be preferred

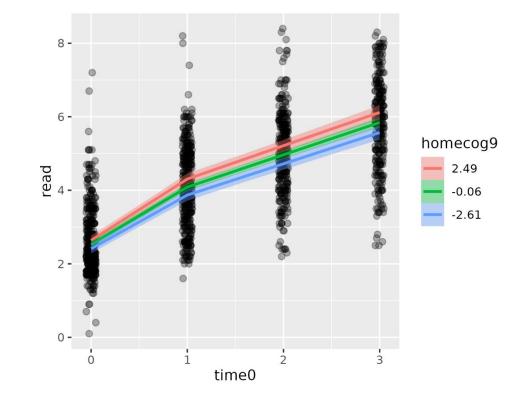
• Note: the LOO in this example is not very stable due to the nonnormality of the outcome

Predicted Average Trajectory

Including Predictors

Time-Invariant vs. Time-Varying Covariates

- Time-invariant predictor: Lv-2
- Time-varying predictor: Lv-1 (to be discussed next week)
 - "Cluster"-mean centering is generally recommended
 - However, usually not meaningful for "time." Why?

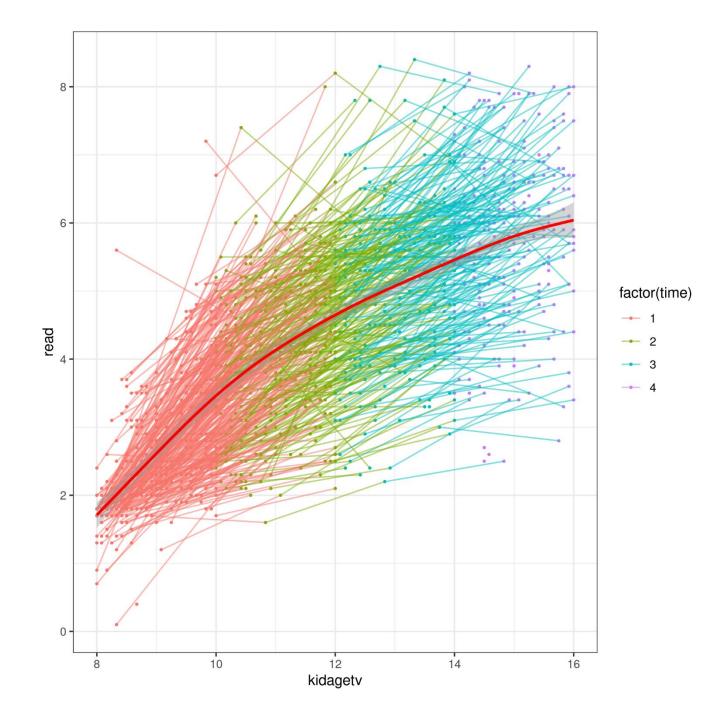

Time-Invariant Covariate

- Time-invariant predictor: Lv-2
 - Homecog (1-14): mother's cognitive stimulation at baseline
 - Centered at 9

Population-Level Effects.

Topulation-level lifetts.							
	Estimate	Est.Error	1-95% CI	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	2.53	0.05	2.43	2.62	1.00	2954	3286
piecetime0nodeEQ11	1.57	0.04	1.48	1.65	1.00	4742	3038
piecetime0nodeEQ12	0.88	0.03	0.83	0.93	1.00	5749	3047
homecog9	0.04	0.02	0.01	0.08	1.00	2717	2356
piecetime0nodeEQ11:homecog9	0.04	0.02	0.01	0.07	1.00	5482	3328
piecetime0nodeEQ12:homecog9	0.01	0.01	-0.01	0.03	1.00	5759	3224

Cross-Level Interactions



Handling Varying Occasions

Different "Time" Variables

- So far we model changes as a function of time passage from a common fixed point in history
 - I.e., when the study started
- In developmental research, one may be more interested in changes as a function of age
 - I.e., time passage from each person's date of birth

- An advantage of MLM is that it does not require equal time intervals
 - Person 1: age 7 \rightarrow age 9 \rightarrow age 10
 - Person 2: age 5 \rightarrow age 6.5 \rightarrow age 8

Handling Varying Occasions

• Age as predictor (see textbook)

Group-Level Effects:

~id (Number of levels: 405)

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept)	0.51	0.11	0.28
sd(kidage6tv)	0.40	0.05	0.31
sd(Ikidage6tvE2)	0.03	0.00	0.02
<pre>cor(Intercept,kidage6tv)</pre>	-0.92	0.07	-0.99
<pre>cor(Intercept,Ikidage6tvE2)</pre>	0.81	0.12	0.52
cor(kidage6tv,Ikidage6tvE2)	-0.95	0.02	-0.98

0.28	0.74 1.00	1871	2192
0.31	0.49 1.00	573	784
0.02	0.04 1.01	309	522

The model suggests that the average initial growth rate is 1.13 unit per year (*SE* = .04)

Population-Level Effects:

	Estimate Est	.Frror 1	-95% CT	u-95% CT	Rhat Bul	L ECC Tail E
Intercept	-0.32	0.10	-0.51	-0.13	1.00	The grov
kidage6tv	1.13	0.04	1.05	1.21	1.00	.05 every Wave 2 (
Ikidage6tvE2	-0.05	0.00	-0.06	-0.04	1.00	Wave 2 (

The growth rate slows down by
.05 every year. Therefore, at
Wave 2 (two years later), the
growth rate is 1.02

Group-Level Effects: ~id (Number of levels: 405)

Estimate Est.Error 1-95% CI u-

sd(Intercept)	0.51	0.11	0.28
sd(kidage6tv)	0.40	0.05	0.31
<pre>sd(Ikidage6tvE2)</pre>	0.03	0.00	0.02
<pre>cor(Intercept,kidage6tv)</pre>	-0.92	0.07	-0.99
<pre>cor(Intercept,Ikidage6tvE2)</pre>	0.81	0.12	0.52
<pre>cor(kidage6tv,Ikidage6tvE2)</pre>	-0.95	0.02	-0.98

The 68% plausible range of the initial growth rate is 1.13 +/- 0.44 = [0.69, 1.57]						
0.49	1.00	573	784			
0.04	1.01	309	522			
The 6 chan +/- 0.	58% pla ge in gro .03 = [-0	usible ra owth ra .02, -0.0	ange of the te is <mark>-0.05</mark> 08]			

Population-Level Effects:

	Estimate	Est.Error	1-95% C1	u-95% CI	Rhat	Bulk_ESS	Tail_ESS
Intercept	-0.32	0.10	-0.51	-0.13	1.00	5713	3244
kidage6tv	1.13	0.04	1.05	1.21	1.00	4869	3388
Ikidage6tvE2	-0.05	0.00	-0.06	-0.04	1.00	5945	3299