Sample Size Planning for MLM

PSYC 575

Winnie Tse, Mark Lai

University of Southern California

Updated: 2022-10-02

Week Learning Objectives

- Describe the importance of having sufficient sample size for scientific research
- Describe conceptually the steps for sample size planning: precision analysis and power analysis
- Perform power analysis for MLM using the PowerUpR application and the simr package
- Understand the effect of uncertainty in parameter values and explore alternative approaches for sample \bullet size planning

Why Sample Size?

Small Sample Size is a Problem Because...

Low power

Misleading and noisy results $^{\mathtt{1}}$

When coupled with publication bias (statistical significance filter) $^{\rm 2}$ $^{\rm 3}$

Nonreproducible findings

[1] See [Maxwell](http://127.0.0.1:5755/10.1037/1082-989X.9.2.147) (2004)

- [2] See the graph on this [blog](https://statmodeling.stat.columbia.edu/2014/11/17/power-06-looks-like-get-used/) post
- [3] See also [Vasishth](https://doi.org/10.1016/j.jml.2018.07.004) et al. (2018)

Review: Sampling distributions

What is the null distribution?

- Suppose we examine the effect of a therapy on eating disorder
- We test against the null hypothesis H_0 : $\gamma_{01}=0$, where γ_{01} is the fixed effect of the therapy on eating disorder

What is the alternative distribution?

Assume that the true effect of this therapy is $\gamma_{01} = .1$

Sampling Distribution as a Function of Sample Size

Assume true effect is $\gamma_{01} = 0.10$

Let's say

- when $N = 20$, $p < .05$ when $\hat{\gamma} \geq 0.82$
- when $N = 200$, $p < .05$ when $\overline{\hat{\gamma}} \geq 0.26$

Steps for Sample Size Planning

Steps for Sample Size Planning

- 1. Write down your model equations
- 2. List out all parameters in the model
- 3. Determine if you want to achieve a desired level of
- a. Power, or
- b. Precision

Step 1: Write down model equations

Group-based therapy for eating disorder (cluster-randomized trial)

Step 1: Write down model equations

Group-based therapy for eating disorder (cluster-randomized trial)

Level-1

$$
Y_{ij} = \beta_{0j} + \beta_{1j} X_{\rm cmc}_{ij} + e_{ij}
$$

$$
e_{ij} \sim N(0, \sigma)
$$

Level-2

$$
\beta_{0j}=\gamma_{00}+\gamma_{01}W_j+u_{0j}\\ \beta_{1j}=\gamma_{10}+\gamma_{11}W_j+u_{1j}\\ \left[\begin{array}{c} u_{0j}\\ u_{1j}\end{array}\right]\sim N\left(\left[\begin{array}{c} 0\\ 0\end{array}\right],\left[\begin{array}{c} \tau_0^2\\ \tau_{01} \end{array}\right] \right)
$$

- γ_{10} : X (purely level-1 with ICC = 0)
- γ_{01} : W (level-2)
- $\gamma_{11} \colon W \times X$ (cross-level interaction)

Step 2: List out all parameters

- 1. Fixed effects: $\gamma_{00},$ $\gamma_{01},$ $\gamma_{10},$ γ_{11}
- 2. Random effects: τ_0^2 , τ_1^2 , τ_{01}
- 3. Number of clusters: J
- 4. Cluster size: n

Level-1

$$
Y_{ij} = \beta_{0j} + \beta_{1j} X_{\rm cm} c_{ij} + e_{ij}
$$

$$
e_{ij} \sim N(0,\sigma)
$$

Level-2

$$
\beta_{0j}=\gamma_{00}+\gamma_{01}W_j+u_{0j}\\ \beta_{1j}=\gamma_{10}+\gamma_{11}W_j+u_{1j}\\ \left[\begin{array}{c} u_{0j}\\ u_{1j}\end{array}\right]\sim N\left(\left[\begin{array}{c} 0\\ 0\end{array}\right],\left[\begin{array}{c} \tau_0^2\\ \tau_{01} \end{array}\right] \right)
$$

Standard Error and Precision Analysis

Sample Size and SE/Post. SD

In the previous graph, when $\overline{N}=20$, the sample estimate is likely to be anywhere between -0.4 and 0.6

$$
SE \propto \frac{1}{\sqrt{N}}
$$

One goal of sample size planning is to

Have sufficient sample size to get precise (low *SE*) sample estimates of an effect

Analytic Formulas of SE

 J = Number of clusters; n = Cluster size

E.g., $J = 100$ schools; $n = 10$ students per school

Assuming $\tau_{01}=0$

$$
\begin{aligned} SE(\gamma_{01}) &= \sqrt{\frac{1}{S_W^2}\bigg(\frac{\tau_0^2}{J}+\frac{\sigma^2}{Jn}\bigg)}\\ SE(\gamma_{10}) &= \sqrt{\frac{\tau_1^2}{J}+\frac{\sigma^2}{JnS_X^2}}\\ SE(\gamma_{11}) &= \sqrt{\frac{1}{S_W^2}\bigg(\frac{\tau_1^2}{J}+\frac{\sigma^2}{JnS_X^2}\bigg)} \end{aligned}
$$

Precision Analysis

Group-based therapy for eating disorder (cluster-randomized trial)

- Intervention at group level
- 10 participants per group
- Outcome standardized (i.e., *SD* = $\sqrt{\tau_0^2 + \sigma^2} = 1$)

 γ = Cohen's d

- ICC = .3 (i.e., $\tau_0^2 = .3$)
- Goal: estimate J such that $SE(\gamma_{10}) \le .1$

E.g., if we estimated the sample effect size to be $d = .25$, the 95% CI would be approximately [.05, .45].

Calculating J

When the predictor is binary (e.g., treatment-control), if half of the groups is in one condition, $S^2_{\hspace{0.5pt} W}$ $\frac{2}{W}=0.25$

- Otherwise, if 30% in one condition, $S^2_{\bar W}$ $\frac{2}{W}=0.3\times0.7$
- $\tau_0^2 = 0.3, \sigma^2 = 0.7, n = 10$

E.g., if $J = 30$

$$
SE(\gamma_{01}) = \sqrt{\frac{1}{S_W^2}\Bigg(\frac{\tau_0^2}{J} + \frac{\sigma^2}{Jn}\Bigg)} = \sqrt{\frac{1}{0.25}\bigg(\frac{0.3}{30} + \frac{0.7}{(30)(10)}\bigg)} = 0.222
$$

Keep trying, and you'll find ...

When J = 148, $SE(\gamma_{01}) = 0.1$

So you'll need 148 groups (74 treatment, 74 control)

Power Analysis

Two-tailed test, $\alpha = .05$

 $H_0: \gamma_{01}=0$

Critical region: $\hat{\gamma}_{01} \leq -0.45$ or $\hat{\gamma}_{01} \geq 0.45$

 H_1 : $\gamma_{01}=0.3$

Power 1 $\approx P(\hat{\gamma}_{01} \le -0.45) + P(\hat{\gamma}_{01} \ge 0.45) = 0.247$

[1] In practice, we need to incorporate the sampling variability of the standard error as well, so this power calculation is only a rough approximation.

Two-tailed test, $\alpha = .05$

 $H_0: \gamma_{01}=0$

Critical region: ${\hat\gamma}_{01}\leq -0.2$ or ${\hat\gamma}_{01}\geq 0.2$

 H_1 : $\gamma_{01} = 0.3$

Tools for Power Analysis

- 1. Stand-alone programs
	- [Optimal](http://www.hlmsoft.net/od/) Design
	- [PinT](https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT)
- 2. R packages
	- simr
- 3. Spreadsheet/Webapp
	- [PowerUp!](https://www.causalevaluation.org/power-analysis.html)

See more discussion in Arend & [Schäfer](https://doi.org/10.1037/met0000195) (2019)

PowerUpR Shiny App

<https://powerupr.shinyapps.io/index/>

Monte Carlo Simulation for Power Analysis

- Simulate a large number (e.g., R = 1,000) of data sets based on given effect size, ICC, etc
- Fit an MLM to each simulated data
- Power \approx Proportion of times $p < \alpha$

See sample R code for using $simr$

Uncertainty in Parameter Values

Uncertainty in Parameter Values

In the PowerUpR demo, to calculate the number of clusters J need to achieve 80% power, we determined

1. Type I error rate = .05 2. Two tailed test = TRUE 3. g2, r21, r22 = 0, as we did not include any covariates 4. p = .5, for a balanced design (half treatment, half control)

However, we need to guess the values of

1. Effect size $= .3$? 2. ICC = $.3?$

The Effect of Uncertainty in Power

Ignoring uncertainty

- The more uncertainty we have but ignore about a parameter value, the more power loss we will have in our study (red curve)
- Uncertainty in both effect size and ICC can further reduce our power
- The more uncertainty we have, the more samples we need to achieve 80% power

Hybrid Classical-Bayesian approach

- Incorporates uncertainty for sample size planning
- Instead of plugging in a point value of a guess, we can specify how much uncertainty we have (e.g., standard error of γ_{01} from a previous study)

$$
\delta \sim N(.3,.1) \quad \rho \sim \text{Beta}(a,b)
$$

where a,b can be calculated by $\hat \rho = .3$ and $\sigma_\rho = .1$ (estimate and uncertainty about ρ)

hcbr Shiny App

http://winnie-wy-tse.shinyapps.io/hcb_shiny

Additional Notes on Power

- Increasing J usually leads to higher power than increasing n
- Balanced designs generally have higher power than unbalanced designs
- Larger sample size required for testing level-2 predictors
- Testing an interaction requires a much larger sample size
	- E.g., 16 times larger than for a main effect