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Week Learning Objectives
Describe, conceptually, what the likelihood function and maximum likelihood estimation are

Describe the differences between maximum likelihood and restricted maximum likelihood

Conduct statistical tests for fixed effects, and use the small-sample correction when needed

Use the likelihood ratio test to test random slopes

Estimate multilevel models with the Bayesian/Markov Chain Monte Carlo estimator in the brms package
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Estimation

Regression: OLS

MLM: Maximum likelihood, Bayesian
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Why should I learn about estimation methods?
Understand software options

Know when to use better methods

Needed for reporting
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The most commonly used methods in MLM are

maximum likelihood (ML) and restricted maximum likelihood (REML)

># Linear mixed model fit by REML ['lmerMod']

># Formula: Reaction ~ Days + (Days | Subject)

>#    Data: sleepstudy

># REML criterion at convergence: 1744

># Random effects:

>#  Groups   Name        Std.Dev. Corr

>#  Subject  (Intercept) 24.74        

>#           Days         5.92    0.07

>#  Residual             25.59        

># Number of obs: 180, groups:  Subject, 18

># Fixed Effects:

># (Intercept)         Days  

>#       251.4         10.5
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Estimation Methods for MLMEstimation Methods for MLM
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For MLM
Find s, s, and  that maximizes the likelihood function

Here's the log-likelihood function for the coefficient of meanses (see code in the provided Rmd):

γ τ σ

ℓ(γ, τ , σ; y) = − {log |V(τ , σ)| + (y − Xγ)⊤V
−1(τ , σ)(y − Xγ)} + K

1

2
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># iteration: 1

>#     f(x) = 47022.519159

># iteration: 2

>#     f(x) = 47151.291766

># iteration: 3

>#     f(x) = 47039.480137

># iteration: 4

>#     f(x) = 46974.909593

># iteration: 5

>#     f(x) = 46990.872588

># iteration: 6

>#     f(x) = 46966.453125

># iteration: 7

>#     f(x) = 46961.719993

># iteration: 8

>#     f(x) = 46965.890703

># iteration: 9

>#     f(x) = 46961.367013

># iteration: 10

>#     f(x) = 46961.288830

># iteration: 11

>#     f(x) = 46961.298898

Numerical Algorithms
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ML vs. REML
REML has corrected degrees of freedom for the variance component estimates (like dividing by  instead
of by  in estimating variance)

REML is generally preferred in smaller samples

The difference is small when the number of clusters is large

Technically speaking, REML only estimates the variance components1

N − 1
N

[1] The fixed effects are integrated out and are not part of the likelihood function. They are solved in a second step, usually
by the generalized least squares (GLS) method
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160 Schools

REML ML

(Intercept) 12.649 12.650

(0.149) (0.148)

meanses 5.864 5.863

(0.361) (0.359)

SD (Intercept id) 1.624 1.610

SD (Observations) 6.258 6.258

Num.Obs. 7185 7185

R2 Marg. 0.123 0.123

R2 Cond. 0.179 0.178

AIC 46969.3 46969.3

BIC 46996.8 46996.8

ICC 0.1 0.1

RMSE 6.21 6.21

16 Schools

REML ML

(Intercept) 12.809 12.808

(0.504) (0.471)

meanses 6.577 6.568

(1.281) (1.197)

SD (Intercept id) 1.726 1.581

SD (Observations) 5.944 5.944

Num.Obs. 686 686

R2 Marg. 0.145 0.146

R2 Cond. 0.211 0.203

AIC 4419.6 4419.7

BIC 4437.7 4437.8

ICC 0.1 0.1

RMSE 5.89 5.89
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Other Estimation Methods
Generalized estimating equations (GEE)

Robust to some misspecification and non-normality
Maybe inefficient in small samples (i.e., with lower power)
See Snijders & Bosker 12.2; the geepack R package

Markov Chain Monte Carlo (MCMC)/Bayesian

Researchers set prior distributions for the parameters
Different from "empirical Bayes": Prior coming from the data

Does not depend on normality of the sampling distributions
More stable in small samples with the use of priors

Can handle complex models
See Snijders & Bosker 12.1
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TestingTesting
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Fixed e�ects 

Usually, the likelihood-based CI/likelihood-ratio (LRT; ) test is sufficient
Require ML (as fixed effects are not part of the likelihood function in REML)

Small sample (10--50 clusters): Kenward-Roger approximation of degrees of freedom
Non-normality: Residual bootstrap1

Random e�ects 

LRT (with  values divided by 2)

(γ)

χ2

(τ)

p

[1]: See van der Leeden et al. (2008) and Lai (2021)
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Testing Fixed E�ectsTesting Fixed E�ects
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Likelihood Ratio (Deviance) Test

Likelihood ratio: 

Deviance:  

=  
= 

ML (instead of REML) should be used

H0 : γ = 0

L(γ = 0)

L(γ = γ̂)

−2 × log( )
L(γ=0)

L(γ=γ̂)

−2LL(γ = 0) − [−2LL(γ = γ̂)]
Deviance ∣γ=0 −Deviance∣γ=γ̂
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Example
...

># Linear mixed model fit by maximum likelihood  ['lmerMod']

># Formula: mathach ~ (1 | id)

>#      AIC      BIC   logLik deviance df.resid 

>#    47122    47142   -23558    47116     7182 

...

...

># Linear mixed model fit by maximum likelihood  ['lmerMod']

># Formula: mathach ~ meanses + (1 | id)

>#      AIC      BIC   logLik deviance df.resid 

>#    46967    46995   -23480    46959     7181 

...

pchisq(47115.81 - 46959.11, df = 1, lower.tail = FALSE)

># [1] 5.95e-36

In lme4, you can also use

anova(m_lv2, ran_int)  # Automatically use ML
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LRT assumes that the deviance under the null
follows a  distribution, which is not likely to hold
in small samples

Inflated Type I error rates

E.g., 16 Schools

LRT critical value with : 3.84
Simulation-based critical value: 4.72

Problem of LRT in Small Samples

χ2

α = .05
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 Test With Small-Sample Correction
It is based on the Wald test (not the LRT):

,
Or equivalently, the  (for a one-parameter test)

The small-sample correction does two things:

Adjust  as it tends to be underestimated in small samples
Determine the critical value based on an  distribution, with an approximate denominator degrees of
freedom (ddf)

F

t = γ̂/ŝe(γ̂)
F = t2

ŝe(γ̂)
F
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# Wald

anova(m_contextual, ddf = "lme4")

># Analysis of Variance Table

>#         npar Sum Sq Mean Sq F value

># meanses    1    860     860    26.4

># ses        1   1874    1874    57.5

# K-R 

anova(m_contextual, ddf = "Kenward-Roger")

># Type III Analysis of Variance Table with Kenward-

>#         Sum Sq Mean Sq NumDF DenDF F value  Pr(>F

># meanses    324     324     1    16    9.96  0.0063

># ses       1874    1874     1   669   57.53 1.1e-13

># ---

># Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 

Kenward-Roger (1997) Correction
Generally performs well with < 50 clusters

For meanses, the critical value (and the  value) is determined based on an  distribution, which
has a critical value of

qf(.95, df1 = 1, df2 = 15.51)

># [1] 4.52

p F (1, 15.51)
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Testing Random E�ectsTesting Random E�ects
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Should you include random slopes?

Theoretically, yes, unless you're certain that the
slopes are the same for every group

However, frequentist methods usually crash with
more than two random slopes

Test the random slopes one by one, and identify
which one is needed
Bayesian methods are more equipped for
complex models

"One-tailed" LRT

LRT  is generally a two-tailed test. But for
random slopes,

 is a one-tailed hypothesis

A quick solution is to divide the resulting  by 21

LRT for Random Slopes

(χ2)

H0 : τ1 = 0

p

[1]: Originally proposed by Snijders & Bosker; tested in
simulation by LaHuis & Ferguson (2009,
https://doi.org/10.1177/1094428107308984)
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...

># Formula: mathach ~ meanses + ses_cmc + (ses_cmc | id)

>#    Data: hsball

># REML criterion at convergence: 46558

...

...

># Formula: mathach ~ meanses + ses_cmc + (1 | id)

>#    Data: hsball

># REML criterion at convergence: 46569

...

G Matrix

Example: LRT for 

pchisq(10.92681, df = 2, lower.tail = FALSE)

># [1] 0.00424

Need to divide by 2

τ 2
1

[
τ 2

0

τ01 τ 2
1

]

[
τ 2

0

0 0
]
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Bayesian EstimationBayesian Estimation
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Bene�ts
Better small sample properties

Less likely to have convergence issues

CIs available for any quantities ( , predictions, etc)

Support complex models not possible with lme4

E.g., 2+ random slopes

Is getting increasingly popular in recent research

R2
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Downsides
Computationally more intensive

But dealing with convergence issues with ML/REML may end up taking more time

Need to learn some new terminologies
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Bayes's Theorem
Posterior  Likelihood  Prior

So, in addition to the likelihood function (as in ML/REML), we need prior information

Prior: Belief about a parameter before looking at the data

For this course, we use default priors set by the brms package

Note that the default priors may change when software gets updated, so keep track of the package
version when you run analyses

∝ ×
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MCMC

b_Intercept 12.647

[12.348, 12.939]

b_meanses 5.854

[5.141, 6.606]

sd_id__Intercept 1.633

[1.386, 1.901]

sigma 6.258

[6.159, 6.365]

Num.Obs. 7185

R2 0.173

R2 Adj. 0.158

R2 Marg. 0.123

ELPD −23433.7

ELPD s.e. 49.7

LOOIC 46867.5

LOOIC s.e. 99.4

WAIC 46867.1

Testing for Bayesian Estimation

A coefficient is statistically different from zero
when the 95% CI does not contain zero.
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Multilevel BootstrapMultilevel Bootstrap
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A simulation-based approach to approximate the sampling distribution of fixed and random effects

Useful for obtaining CIs
Especially for statistics that are functions of fixed/random effects (e.g., )

Parametric, Residual, and Cases bootstrap

R2
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In my own work,1 the residual bootstrap was found to perform best, especially when data are not normally
distributed and when the number of clusters is small

See R code for this week

Lai (2021, https://doi.org/10.1080/00273171.2020.1746902)
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Bonus: More on Maximum Likelihood EstimationBonus: More on Maximum Likelihood Estimation
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Let's say we want to estimate the population
mean math achievement score 

We need to make some assumptions:

Known SD: 

The scores are normally distributed in the
population

What is Likelihood?

(μ)

σ = 8
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Learning the Parameter From the Sample
Assume that we have scores from 5 representative students

Student Score

1 23

2 16

3 5

4 14

5 7
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Student Score ` `

1 23 0.013

2 16 0.038

3 5 0.041

4 14 0.044

5 7 0.046

Multiplying them all together:

= Product of the probabilities =

># [1] 4.21e-08

Likelihood
If we assume that , how likely will we get 5 students with these scores?μ = 10

P (Yi = yi ∣ μ = 10)

P (Y1 = 23, Y2 = 16, Y3 = 5, Y4 = 14, Y5 = 7|μ = 10)
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Student Score ` `

1 23 0.023

2 16 0.046

3 5 0.030

4 14 0.049

5 7 0.038

Multiplying them all together:

= Product of the probabilities =

># [1] 5.98e-08

If μ = 13

P (Yi = yi ∣ μ = 13)

P (Y1 = 23, Y2 = 16, Y3 = 5, Y4 = 14, Y5 = 7|μ = 13)
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Likelihood Function Log-Likelihood (LL) Function

Compute the likelihood for a range of  valuesμ
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Maximum Likelihood
 maximizes the (log) likelihood function

Maximum likelihood estimator (MLE)

Estimating 

μ̂ = 13

σ
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Curvature and Standard Errors
N = 5 N = 20
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