Model Estimation and Testing

PSYC 575

Mark Lai

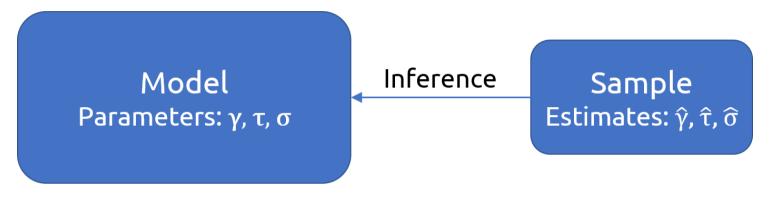
University of Southern California

2020/09/01 (updated: 2022-09-17)

Week Learning Objectives

- Describe, conceptually, what the likelihood function and maximum likelihood estimation are
- Describe the differences between **maximum likelihood** and **restricted maximum likelihood**
- Conduct statistical tests for fixed effects, and use the **small-sample correction** when needed
- Use the **likelihood ratio test** to test random slopes
- Estimate multilevel models with the Bayesian/Markov Chain Monte Carlo estimator in the brms package

Estimation



Regression: OLS

MLM: Maximum likelihood, Bayesian

Why should I learn about estimation methods?

- Understand software options
- . Know when to use better methods
- Needed for reporting

The most commonly used methods in MLM are

maximum likelihood (ML) and restricted maximum likelihood (REML)

```
># Linear mixed model fit by REML ['lmerMod']
># Formula: Reaction ~ Days + (Days | Subject)
     Data: sleepstudy
>#
># REML criterion at convergence: 1744
># Random effects:
># Groups Name
                 Std.Dev. Corr
># Subject (Intercept) 24.74
                              0.07
>#
           Days
                5.92
># Residual
            25.59
># Number of obs: 180, groups: Subject, 18
># Fixed Effects:
># (Intercept)
                    Days
       251.4
                    10.5
>#
```

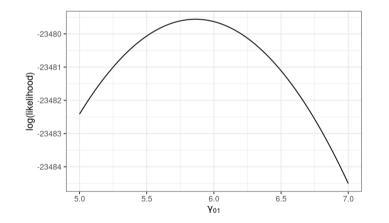
Estimation Methods for MLM

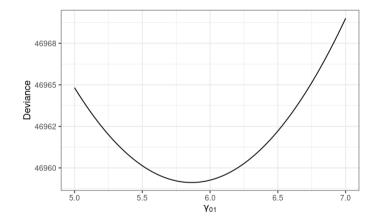
For MLM

Find γ s, τ s, and σ that maximizes the likelihood function

$$\ell(oldsymbol{\gamma},oldsymbol{ au},\sigma;\mathbf{y}) = -rac{1}{2} \Big\{ \log |\mathbf{V}(oldsymbol{ au},\sigma)| + (\mathbf{y}-\mathbf{X}oldsymbol{\gamma})^ op \mathbf{V}^{-1}(oldsymbol{ au},\sigma)(\mathbf{y}-\mathbf{X}oldsymbol{\gamma}) \Big\} + K$$

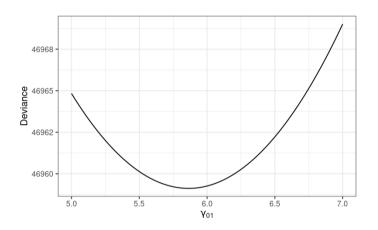
Here's the log-likelihood function for the coefficient of meanses (see code in the provided Rmd):





Numerical Algorithms

># iteration: 1 ># f(x) = 47022.519159 ># iteration: 2 ># f(x) = 47151.291766 ># iteration: 3 f(x) = 47039.480137># iteration: 4 ># f(x) = 46974.909593 ># iteration: 5 ># f(x) = 46990.872588 ># iteration: 6 ># f(x) = 46966.453125 ># iteration: 7 ># f(x) = 46961.719993 ># iteration: 8 ># f(x) = 46965.890703 ># iteration: 9 ># f(x) = 46961.367013 ># iteration: 10 ># f(x) = 46961.288830 ># iteration: 11 ># f(x) = 46961.298898



ML vs. REML

REML has corrected degrees of freedom for the variance component estimates (like dividing by N-1 instead of by N in estimating variance)

- REML is generally preferred in smaller samples
- The difference is small when the number of clusters is large

Technically speaking, REML only estimates the variance components¹

[1] The fixed effects are integrated out and are not part of the likelihood function. They are solved in a second step, usually by the generalized least squares (GLS) method

160 Schools

	REML	ML
(Intercept)	12.649	12.650
	(0.149)	(0.148)
meanses	5.864	5.863
	(0.361)	(0.359)
SD (Intercept id)	1.624	1.610
SD (Observations)	6.258	6.258
Num.Obs.	7185	7185
R2 Marg.	0.123	0.123
R2 Cond.	0.179	0.178
AIC	46969.3	46969.3
BIC	46996.8	46996.8
ICC	0.1	0.1
RMSE	6.21	6.21

16 Schools

	REML	ML
(Intercept)	12.809	12.808
	(0.504)	(0.471)
meanses	6.577	6.568
	(1.281)	(1.197)
SD (Intercept id)	1.726	1.581
SD (Observations)	5.944	5.944
Num.Obs.	686	686
R2 Marg.	0.145	0.146
R2 Cond.	0.211	0.203
AIC	4419.6	4419.7
BIC	4437.7	4437.8
ICC	0.1	0.1
RMSE	5.89	5.89

Other Estimation Methods

Generalized estimating equations (GEE)

- Robust to some misspecification and non-normality
- Maybe inefficient in small samples (i.e., with lower power)
- See Snijders & Bosker 12.2; the geepack R package

Markov Chain Monte Carlo (MCMC)/Bayesian

- Researchers set prior distributions for the parameters
 - Different from "empirical Bayes": Prior coming from the data
- Does not depend on normality of the sampling distributions
 - More stable in small samples with the use of priors
- Can handle complex models
- See Snijders & Bosker 12.1

Testing

Fixed effects (γ)

- Usually, the likelihood-based CI/likelihood-ratio (LRT; χ^2) test is sufficient
 - Require ML (as fixed effects are not part of the likelihood function in REML)
- Small sample (10--50 clusters): Kenward-Roger approximation of degrees of freedom
- Non-normality: Residual bootstrap¹

Random effects (au)

• LRT (with *p* values divided by 2)

Testing Fixed Effects

Likelihood Ratio (Deviance) Test

$$H_0:\gamma=0$$

Likelihood ratio:
$$rac{L(\gamma=0)}{L(\gamma=\hat{\gamma})}$$

Deviance:
$$-2 \times \log\left(\frac{\langle \gamma - \hat{\gamma} \rangle}{L(\gamma = \hat{\gamma})}\right)$$

= $-2LL(\gamma = 0) - [-2LL(\gamma = \hat{\gamma})]$
= Deviance $|_{\gamma=0}$ -Deviance $|_{\gamma=\hat{\gamma}}$

ML (instead of REML) should be used

Example

```
. . .
># Linear mixed model fit by maximum likelihood ['lmerMod']
># Formula: mathach \sim (1 | id)
                BIC logLik deviance df.resid
>#
       AIC
># 47122 47142 -23558 47116
                                          7182
. . .
. . .
># Linear mixed model fit by maximum likelihood ['lmerMod']
># Formula: mathach ~ meanses + (1 | id)
                BIC logLik deviance df.resid
       AIC
>#
   46967 46995 -23480 46959
>#
                                          7181
. . .
pchisq(47115.81 - 46959.11, df = 1, lower.tail = FALSE)
```

># [1] 5.95e-36

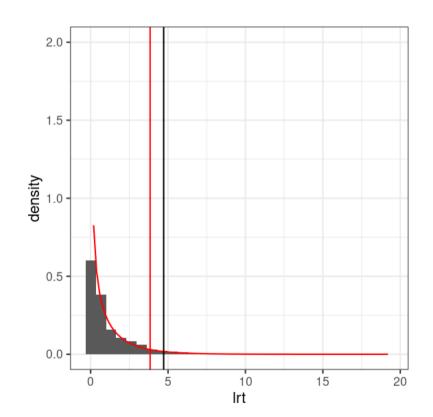
In lme4, you can also use

anova(m_lv2, ran_int) # Automatically use ML

Problem of LRT in Small Samples

LRT assumes that the deviance under the null follows a χ^2 distribution, which is not likely to hold in small samples

- Inflated Type I error rates
- E.g., 16 Schools
 - + LRT critical value with lpha=.05: 3.84
 - Simulation-based critical value: 4.72



${\cal F}$ Test With Small-Sample Correction

It is based on the Wald test (not the LRT):

- $t=\hat{\gamma}/\hat{ ext{se}}(\hat{\gamma})$,
- Or equivalently, the $F=t^2$ (for a one-parameter test)

The small-sample correction does two things:

- Adjust $\hat{\mathrm{se}}(\hat{\gamma})$ as it tends to be underestimated in small samples
- Determine the critical value based on an *F* distribution, with an approximate **denominator degrees of freedom (ddf)**

Kenward-Roger (1997) Correction

Generally performs well with < 50 clusters

Wald # K-R anova(m_contextual, ddf = "lme4") anova(m_contextual, ddf = "Kenward-Roger") ># Analysis of Variance Table ># Type III Analysis of Variance Table with Kenwardnpar Sum Sq Mean Sq F value Sum Sq Mean Sq NumDF DenDF F value Pr(>F ># ># ># meanses 324 ># meanses 1 860 860 26.4 324 1 16 9.96 0.006 ># ses 1 1874 1874 57.5 669 57.53 1.1e-1 ># ses 1874 1874 1 ># ---># Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05

For meanses, the critical value (and the p value) is determined based on an F(1, 15.51) distribution, which has a critical value of

qf(.95, df1 = 1, df2 = 15.51)

># [1] 4.52

Testing Random Effects

LRT for Random Slopes

Should you include random slopes?

Theoretically, yes, unless you're certain that the slopes are the same for every group

However, frequentist methods usually crash with more than two random slopes

- Test the random slopes one by one, and identify which one is needed
- Bayesian methods are more equipped for complex models

"One-tailed" LRT

LRT (χ^2) is generally a two-tailed test. But for random slopes,

 $H_0: au_1=0$ is a one-tailed hypothesis

A quick solution is to divide the resulting p by 2^1

[1]: Originally proposed by Snijders & Bosker; tested in simulation by LaHuis & Ferguson (2009, https://doi.org/10.1177/1094428107308984)

Example: LRT for au_1^2

pchisq(10.92681, df = 2, lower.tail = FALSE)

># [1] 0.00424

Need to divide by 2

Bayesian Estimation

Benefits

- Better small sample properties
- Less likely to have convergence issues
- CIs available for any quantities (R^2 , predictions, etc)
- Support complex models not possible with lme4
 - E.g., 2+ random slopes
- Is getting increasingly popular in recent research

Downsides

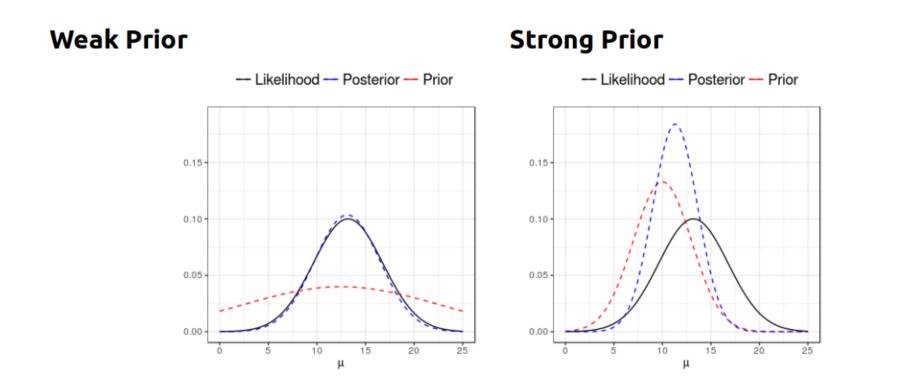
- Computationally more intensive
 - But dealing with convergence issues with ML/REML may end up taking more time
- Need to learn some new terminologies

Bayes's Theorem

$\textit{Posterior} \propto \textit{Likelihood} \times \textit{Prior}$

- So, in addition to the likelihood function (as in ML/REML), we need prior information
- Prior: Belief about a parameter before looking at the data
- For this course, we use default priors set by the brms package
 - Note that the default priors may change when software gets updated, so keep track of the package version when you run analyses

Bayes's Theorem: $P(\theta|y) P(y|\theta) P(\theta)$



	МСМС
b_Intercept	12.647
	[12.348, 12.939]
b_meanses	5.854
	[5.141, 6.606]
sd_idIntercept	1.633
	[1.386, 1.901]
sigma	6.258
	[6.159, 6.365]
Num.Obs.	7185
R2	0.173
R2 Adj.	0.158
R2 Marg.	0.123
ELPD	-23433.7
ELPD s.e.	49.7
LOOIC	46867.5
LOOIC s.e.	99.4
WAIC	46867.1

Testing for Bayesian Estimation

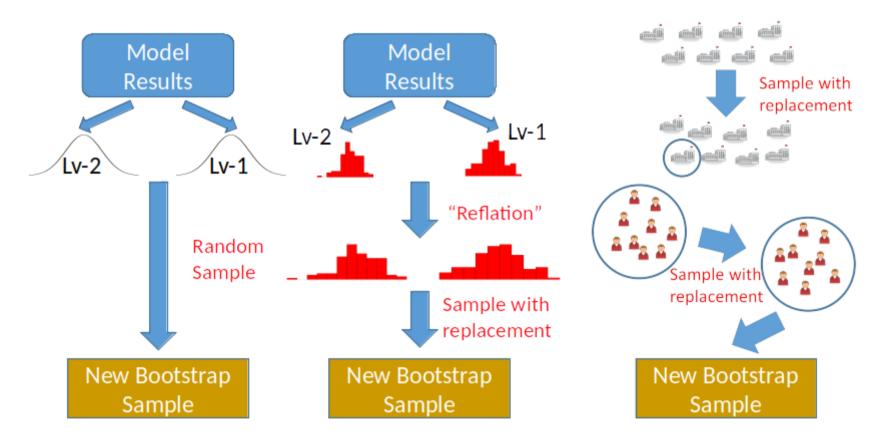
A coefficient is statistically different from zero when the 95% CI does not contain zero.

Multilevel Bootstrap

A simulation-based approach to approximate the sampling distribution of fixed and random effects

- Useful for obtaining CIs
- Especially for statistics that are functions of fixed/random effects (e.g., R^2)

Parametric, Residual, and Cases bootstrap



In my own work,¹ the residual bootstrap was found to perform best, especially when data are not normally distributed and when the number of clusters is small

See R code for this week

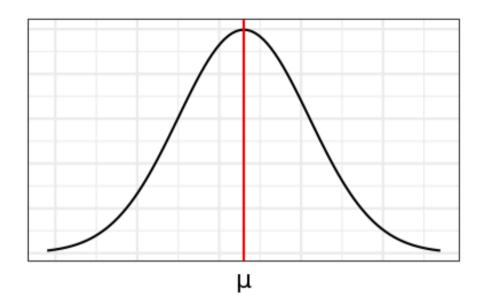
Bonus: More on Maximum Likelihood Estimation

What is Likelihood?

Let's say we want to estimate the population mean math achievement score (μ)

We need to make some assumptions:

- Known SD: $\sigma = 8$
- The scores are normally distributed in the population



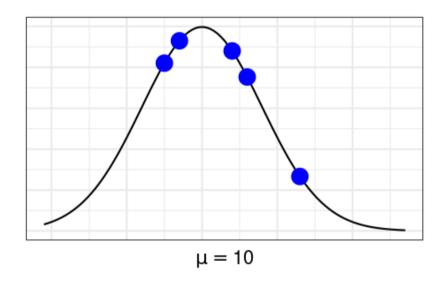
Learning the Parameter From the Sample

Assume that we have scores from 5 representative students

Student	Score
1	23
2	16
3	5
4	14
5	7

Likelihood

If we **assume** that $\mu = 10$, how likely will we get 5 students with these scores?



Student	Score	$ P(Y_i=y_i \mid \mu=10)$ `
1	23	0.013
2	16	0.038
3	5	0.041
4	14	0.044
5	7	0.046

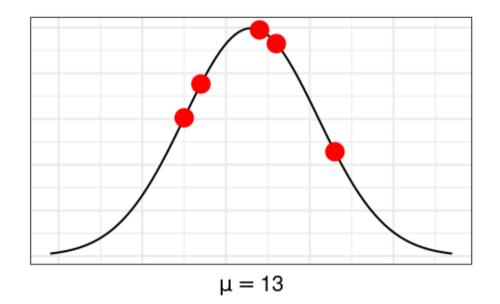
Multiplying them all together:

 $P(Y_1=23,Y_2=16,Y_3=5,Y_4=14,Y_5=7|\mu=10)$

= Product of the probabilities =

># [1] 4.21e-08

If $\mu=13$



Student	Score	$P(Y_i = y_i \mid \mu = 13)$
1	23	0.023
2	16	0.046
3	5	0.030
4	14	0.049
5	7	0.038

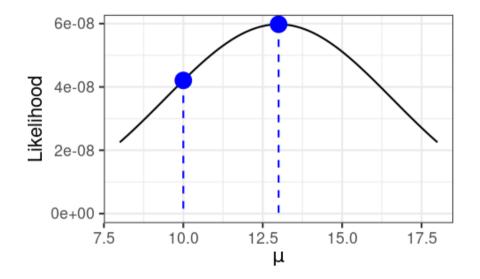
Multiplying them all together:

 $P(Y_1=23,Y_2=16,Y_3=5,Y_4=14,Y_5=7|\mu=13)$

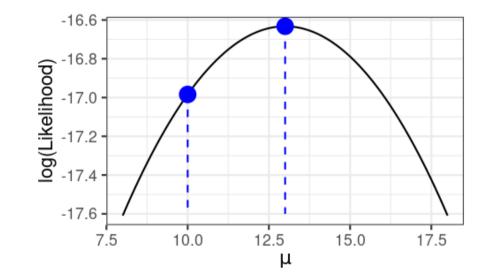
= Product of the probabilities =

># [1] 5.98e-08

Likelihood Function



Log-Likelihood (LL) Function

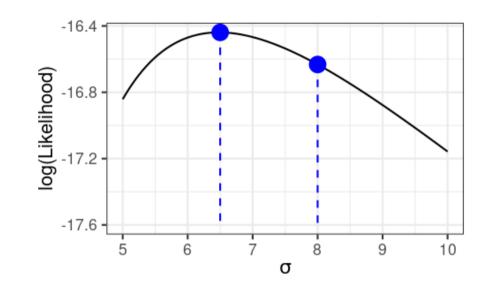


Maximum Likelihood

 $\hat{\mu}=13$ maximizes the (log) likelihood function

Maximum likelihood estimator (MLE)

Estimating σ



Curvature and Standard Errors

N=5

